
Task and Machine Heterogeneities:  
Higher Moments Matter 

 
Abdulla M. Al-Qawasmeh1, Anthony A. Maciejewski1, Howard Jay Siegel1,2, Jay Smith1,3, 

 and Jerry Potter1 
1Department of Electrical and Computer Engineering, 2Department of Computer Science,  

Colorado State University, Fort Collins, Colorado, USA 
3DigitalGlobe Inc., Longmont, Colorado, USA 

{Abdulla.Al-Qawasmeh, aam, hj, jerry.potter}@colostate.edu 
jtsmith@digitalglobe.com 

 
 
 

Abstract - One type of heterogeneous computing (HC) 
systems consists of machines with diverse capabilities 
harnessed together to execute a set of tasks that vary in their 
computational complexity. An HC system can be characterized 
using an Estimated Time to Compute (ETC) matrix. Each 
value in this matrix represents the ETC of a specific task on a 
specific machine when executed exclusively. Heuristics use the 
values in the ETC matrix to allocate tasks to machines in the 
HC system. The performance of resource allocation heuristics 
can be affected significantly by factors such as task and 
machine heterogeneities. Therefore, quantifying heterogeneity 
will allow a system to select a heuristic appropriate for the 
given heterogeneous environment. In this paper, we identify 
different central moments used to quantify the heterogeneity of 
ETC matrices obtained from real world systems and 
benchmark data, and show the effect of these moments on the 
performance of heuristics both through simple examples and 
simulations. 
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1 Introduction 
  One type of heterogeneous computing (HC) systems 
consists of machines with diverse capabilities harnessed 
together to execute a set of tasks that vary in their 
computational complexity. The Estimated Time to Compute 
(ETC) each task on each machine in an HC system is arranged 
in an ETC matrix, where entry ETC(i, j) is the estimated 
execution time of task i on machine j when executed alone. 
The assumption of such ETC information is a common 
practice in resource allocation research (e.g., [5, 11, 14, 16, 
17, 22, 24]). Examples of ETC matrices are given in 
Subsections 2.3 and 2.4.  

Machine heterogeneity is the degree to which the 

execution time of a given task varies for different machines 
(the variation along the same row of an ETC matrix). 
Analogously, task heterogeneity is the degree to which the 
execution times of different tasks vary for the same machine 
(the variation along the same column) in the ETC matrix.  

In an HC system, tasks should be mapped to the 
available machines in a way that optimizes some performance 
objective (e.g., [5, 6, 7, 8, 9, 13, 18, 19, 20, 23]). Mapping 
tasks to machines in HC systems has been shown to be, in 
general, an NP-Complete problem [10, 12, 15]. Hence, many 
heuristics have been developed for allocating tasks to 
machines in HC systems. It also has been shown in [7] that the 
performance of resource allocation heuristics is affected 
significantly by factors such as the level of machine 
heterogeneity. Therefore, quantifying the heterogeneity of a 
given heterogeneous environment will allow the selection of a 
heuristic that is the most appropriate. 

In previous work, either the range of the execution time 
values or their standard deviation was used as a measure of 
the heterogeneity to generate ETC matrices for simulation 
studies.  These measures do not completely represent the 
possible variation in heterogeneity. For example, many ETC 
matrices with the same standard deviation can have other 
statistical properties (that are vastly different and that may be 
highly correlated with a mapping heuristic s performance). 
The decision of what measure best quantifies heterogeneity 
should be based on how it affects the performance of the 
heuristics being evaluated in an HC system. The contributions 
of this paper are: (1) an identification of different central 
moments (such as skewness and kurtosis) used to quantify 
task and machine heterogeneity, and (2) task allocation 
examples and simulations that demonstrate the importance of 
these moments. The examples show that if these statistical 
measures are ignored, incorrect assumptions about the 
potential performance of an HC system and the applied 
heuristics can be made.  This research was supported by the NSF under grant No. CNS-0615170 and 

by the Colorado State University George T. Abell Endowment.  



This paper is organized as follows. Section 2 discusses 
different statistical measures and central moments that can be 
used to quantify heterogeneity. Simulation setup is described 
in Section 3. Simulation results are given in Section 4. Section 
5 discusses related work. Conclusions are given in Section 6. 

2 Measuring the Heterogeneity of an 
ETC Matrix  

2.1 Introduction 
In this section, we describe three statistical measures: (a) 

coefficient of variation, (b) skewness, also called the third 
central moment, and (c) kurtosis, also called the fourth central 
moment. An ETC matrix for a given environment can be 
obtained from user supplied information, experimental data, or 
task profiling and analytical benchmarking [1, 14, 17, 25]. The 
statistical measures described in this section can be used to 
characterize the heterogeneity of an existing ETC matrix.  

We give two simple examples that illustrate the effect of 
skewness and kurtosis on the performance of two heuristics: 
Min-Min [15] and Max-Min [15]. These examples are given in 
Subsections 2.3 and 2.4, respectively.  

The following variables will be used in the calculation of 
each of the statistical measures: T is the number of tasks, M is 
the number of machines, (t)

i is the mean ETC of task i over 

all machines, given by 
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2.2 Coefficient of Variation 
The COV of a set of values with standard deviation  

and mean is given by 

 COV .  

Let (t)
iV be machine COV for task i, given by 
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jV be task COV for machine j, given by 
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Task heterogeneity as measured by the Average Task COV 
(ATC) is given by 
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Machine heterogeneity as measured by the Average Machine 
COV (AMC) is given by 
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Although both ATC and AMC quantify the variation of 
the execution time values, they do not indicate whether most 
of the values are less than or greater than the mean, and 
whether the variation is caused by many values having an 
average deviation from the mean, or small number of values 
having large deviation from the mean. These are quantified by 
the skewness and the kurtosis, respectively. Subsections 2.3 
and 2.4 describe how the skewness and kurtosis may have a 
great effect on the performance of heuristics. Thus, ignoring 
these heterogeneity measures may lead to the wrong choice of 
a heuristic for mapping the tasks in a given HC system. 

2.3 Skewness (Third Central Moment) 
 The skewness of a set of values measures the degree of 
asymmetry of the values over the mean. Positive skewness 
means that most of the values are below the mean and 
negative skewness means that most of the values are greater 
than the mean. 
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Task heterogeneity as measured by the Average Task 
Skewness (ATS) is given by  
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Machine heterogeneity as measured by the Average Machine 
Skewness (AMS) is given by  
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An example to show the effect of skewness, we consider 
two heuristics: Max-Min and Min-Min. The two heuristics 
have been studied widely (e.g., [2, 3, 7, 8, 15, 19]). Figure 1 
shows the procedure for the Min-Min heuristic. Min-Min 
starts by assigning tasks with small execution times before 
ones with longer execution times. The procedure for Max-Min 
is similar to that of Min-Min except that in step (b) instead of 
mapping the task that has the minimum completion time it 
maps the task the has the maximum completion time. Max-
Min heuristic starts by assigning the tasks with longer 
execution times. 

Do the following steps while there are unmapped tasks 
(1) For each unmapped task determine the machine that 
      gives the task its minimum completion time. 
(2) Among the task-machine pairs determined in (1) map  
      the task that has the minimum completion time to the  

      corresponding machine 
(3) update the ready times of the machine where the task 
      was mapped to. 

Figure 1. Procedure for Min-Min. 

Min-Min performs better than Max-Min in most cases 
[7, 8]. However, Max-Min outperforms Min-Min when there 
are many more shorter tasks than there are longer ones (i.e., 
the corresponding ETC matrix has high positive task 
skewness). This is because Max-Min starts by assigning the 

longer tasks to their best machine. Table 1 shows a scenario in 
which the Max-Min heuristic outperforms the Min-Min 
heuristic. The ETC shown in Table 1 has a positive ATS 
value of 0.62 and an ATC value of 0.7. The makespan, which 
is the greatest finish time among all the machines, of the 
mapping produced by the Min-Min heuristic is 22 and the 
makespan of the mapping produced by Max-Min is 18. A 
pictorial representation of the assignments made by each 
heuristic for the ETC in Table 1 is given in Figure 2. 

Table 1. An example ETC matrix that illustrates the situation 
where the Max-Min heuristic outperforms the Min-Min 

heuristic for an ETC matrix with high task skewness. 

          m1      m2 

t1 3 5 

t2 7 4 

t3 20 18 

 

 
Figure 2. A pictorial representation of the mapping produced 
by the Max-Min and Min-Min heuristics for the ETC matrix 

given in Table 1. 

An example where the Min-Min heuristic outperforms 
Max-Min for an ETC matrix with negative task skewness is 
given in Table 2. The ETC in Table 2 has a negative ATS 
value of 0.54, and an ATC value of 0.45. The makespan of 
the mapping produced by Min-Min is 23 and the makespan of 
the mapping produced by Max-Min is 25. A pictorial 
representation of the mapping produced by each heuristic is 
given in Figure 3. 

Table 2. An Example ETC Matrix that illustrates the situation 
where the Min-Min heuristic outperforms the Max-Min 
heuristic for an ETC matrix with negative task skewness 

 m1 m2 

t1 3 6 

t2 25 12 

t3 20 14 



 
Figure 3. Pictorial representation of the mapping produced by 

Min-Min and Max-Min heuristics for the ETC given in     
Table 2. 

2.4 Kurtosis (Fourth Central Moment) 
 The kurtosis of a set of values measures the extent to 
which the deviation is caused by a small number of values 
having extreme deviation from the mean versus large number 
of values having modestly-sized deviations. Higher values of 
kurtosis indicate that the standard deviation is caused by 
fewer values having extreme deviation. The definition of 
kurtosis that we use in this paper is the excess kurtosis. Excess 
kurtosis equals kurtosis minus three. This makes the excess 
kurtosis of the Gaussian (normal) distribution equal to zero. 

Let (t)
iK  be machine kurtosis for task i, given by  
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Task heterogeneity as measured by the Average Task Kurtosis 
(ATK) is given by  
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Machine heterogeneity as measured by the Average Machine 
Kurtosis (AMK) is given by  
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To show how kurtosis may affect the performance of 
two heuristics, we give an example in Table 3 of an ETC 

matrix with high kurtosis where the Max-Min heuristic 
outperforms Min-Min. The pictorial representation of the 
mapping produced by Min-Min and Max-Min of the ETC in 
Table 3 is given in Figure 5. The makespan for the mapping 
produced by Max-Min is 212 and the makespan for the 
mapping produced by Min-Min is 243. Although ATS in this 
table is close to zero ( 0.039), this ETC matrix still has the 
property that there are more machines with smaller execution 
time tasks than there are ones with greater execution time (t8 
in Table 3). The reason that this matrix has a small magnitude 
of skewness is that there is a task (t1 in Table 3) with a very 
short average execution time. However, this ETC matrix has a 
high ATK value (0.92) compared to the normal distribution, 
which has zero kurtosis, and the uniform distribution, which 
has kurtosis of 1.2. The ATC of the ETC in Table 3 is 0.47. 
A pictorial representation of the mapping produced by each 
heuristic for the ETC matrix in Table 3 is given in Figure 4. 

An example where Min-Min outperforms Max-Min for 
an ETC matrix with low task kurtosis is given in Table 4. The 
ETC in Table 4 has a low kurtosis value of 0.31. The ATS 
value of the ETC matrix is 0.37, and the ATC value is 0.1. 
The makespan of the mapping produced by Min-Min is 190 
and the makespan of the mapping produced by Max-Min is 
198. A representation of the mapping produced by each 
heuristic for the ETC matrix in Table 4 is given in Figure 5. 

Table 3. An example ETC matrix that illustrates the situation 
where the Max-Min heuristic outperforms the Min-Min 
heuristic for an ETC matrix with high kurtosis and low 

skewness. 

 m1 m2 

t1 3 5 
t2 55 53 
t3 49 47 
t4 50 52 
t5 54 56 
t6 45 51 
t7 54 50 
t8 105 93 

 

The examples given in Tables 1, 2, 3, and 4 are just to 
illustrate possible ways different values of kurtosis and 

be correlated in a different manner with the skewness and 
kurtosis values of the ETC matrix. Max-Min and Min-Min 
heuristics were chosen for these examples because, in general, 
they have large difference in performance. These examples 
show some special cases where Max-Min has better 
performance. 



 
Figure 4. A pictorial representation of the mapping produced 
by the Max-Min and Min-Min heuristics for the ETC matrix 

given in Table 3. 

 

Table 4. An example ETC matrix that illustrates the situation 
where the Min-Min heuristic outperforms the Max-Min 

heuristic for an ETC matrix with low kurtosis. 

 m1 m2 

t1 49 44 
t2 55 50 
t3 49 44 
t4 48 52 
t5 50 56 
t6 40 51 
t7 54 46 
t8 52 59 

 

 
Figure 5. A pictorial representation of the mapping produced 
by the Max-Min and Min-Min heuristics for the ETC matrix 

given in Table 4. 

3 Simulation Setup  
We conducted a number of simulations to assess the 

effect of different COV and skewness values on the 

performance of the selected heuristics. The performance of 
the heuristics is calculated in terms of the makespan where a 
smaller makespan is better. Each of the ETC matrices that 
were used in the simulations was generated via the 
coefficient-of-variation-based method (CVB) proposed in [4]. 
The CVB method uses the COV to represent task and 
machine heterogeneity. To generate an ETC matrix, the CVB 
method takes three parameters: (a) task COV, (b) machine 
COV, and (c) the mean task execution time. The CVB method 
uses a gamma distribution to generate the execution time 
values. The shape parameter  and the scale parameter  can 
be expressed in terms of task COV, machine COV, and the 
mean task execution time. The number of tasks and machines 
in each of the ETC matrices used in the simulation are 128 
and 8, respectively. For simplicity, static mapping, similar to 
the mapping problem in [7], was considered in this study. 

After each ETC was generated using a specific mean, 
task COV, and machine COV (parameters), we recalculated 
these parameters of the generated ETC matrix to obtain their 
actual values. Actual parameter values differ from those that 
were used to generate the ETC matrix due to a limited number 
of values being generated. The heuristics used in the studies 
are: Min-Min, and Max-Min. 

Consistent, inconsistent and partially-consistent matrices 
were used in the simulations. For a machine consistent matrix, 
if machine mi is faster than machine mj for a given task, then 
mi must be faster than mj for all other tasks [7]. Similarly, for 
a task consistent matrix, if task ti runs faster on that task tj on 
a given machine, then ti must run faster than tj on all machines 
[21]. An inconsistent ETC matrix is neither machine 
consistent nor task consistent [7]. A partially-consistent ETC 
matrix is an inconsistent ETC matrix with a consistent sub-
matrix [7]. In the partially-consistent ETC matrices used in 
our studies, half of the machines (4 machines) and half of the 
tasks (64 tasks) are consistent. We found that the most 
significant difference between the performances of the 
heuristics under study is for partially-consistent ETC matrices, 
so we show only the results for partially-consistent ETC 
matrices in the next section. 

4 Simulation Results  
Figures 6 and 7 show the normalized makespan, which 

is the makespan of the heuristic divided by the makespan of 
Max-Min. In Figure 6, machine COV was fixed at 0.1 and the 
task COV was increased from 0.01 to 1.5. After the ETC 
matrices were generated the task skewness value was 
calculated for each ETC matrix. The average machine 
skewness for all the ETC matrices shown in Figure 6 is 0.09. 
As shown in the figure, Max-Min outperforms Min-Min for 
task skewness values greater than 1.4. In Figure 7, task COV 
was fixed at 0.7 and the machine COV was increased from 
0.01 to 1.5. Min-Min outperforms Max-Min for machine 
COV values greater than 0.5. 
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Figure 6. Scatter plot of the makespan of Min-Min normalized 
with respect to Max-Min. Machine COV in this figure is fixed 

at 0.1, and the task COV is increased from 0.01 to 1.5. 
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Figure 7. Scatter plot of the makespan of Min-Min normalized 

with respect to Max-Min. Task COV is fixed at 0.7, and 
machine COV is increased from 0.01 to 1.5. 

Simulations using consistent and inconsistent ETC 
matrices have shown similar correlation between the 
performance of Min-Min and Max-Min with the statistical 
measures. However, the difference in performance was less 
significant. 

5 Related Work  
ETC matrices were previously used with different 

degrees of heterogeneity (e.g., [1, 5, 7, 8, 19, 23]). Most of 
these ETC matrices were generated by the range-based 
method described in [7] and the CVB described in [4]. 
Therefore, depending on which method was used, 
heterogeneity was assumed to be either the range of the 
execution time values, or the COV. To the best of our 
knowledge, no previous efforts have used other measures to 
quantify the heterogeneity of the execution time values. 

6 Conclusions 
In this paper, the use of higher central moments 

(skewness and kurtosis) to quantify heterogeneity was 
proposed. A method to calculate each of the moments and 
measures for an existing ETC matrix was described. The 
impact that each heterogeneity measure may have on the 

performance of Min-Min and Max-Min heuristics was 
demonstrated through simple examples. In addition, 
simulations have been conducted to show the impact of the 
COV and skewness on the heuristics. Further simulations have 
to be carried out to show the effect that kurtosis may have on 
the performance of heuristics.  
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