
Stochastically Robust Static Resource Allocation for

Energy Minimization with a Makespan Constraint

in a Heterogeneous Computing Environment

Jonathan Apodaca#1, Dalton Young∗2, Luis Briceño∗3, Jay Smith∗4,$12,

Sudeep Pasricha∗5, Anthony A. Maciejewski∗6,Howard Jay Siegel∗7,

Shirish Bahirat∗8, Bhavesh Khemka∗9, Adrian Ramirez∗10, Young Zou∗11

#Department of Computer Science, ∗Department of Electrical & Computer Engineering, Colorado State University

Fort Collins, CO 80523-1373, USA

{1jonathan.apodaca, 2
dalton.young,

3
ldbricen,

4
james.t.smith_ii,

5
sudeep,

6
aam,

7
hj,

8
shirish.bahirat,

9
bhavesh.khemka,

10
adrian.ramirez,

11
yong.zou} @colostate.edu

$DigitalGlobe

Longmont, CO 80503, USA
12
jtsmith@digitalglobe.com

Abstract—In a heterogeneous environment, uncertainty in
system parameters may cause performance features to degrade
considerably. It then becomes necessary to design a system that
is robust. Robustness can be defined as the degree to which a
system can function in the presence of inputs different from
those assumed. In this research, we focus on the design of robust
static resource allocation heuristics suitable for a heterogeneous
compute cluster that minimize the energy required to complete
a given workload. In this study, we mathematically model and
simulate a heterogeneous computing system that is assumed
part of a larger warehouse scale computing environment. Task
execution times/energy consumption may vary significantly across
different data sets in our heterogeneous cluster; therefore, the
execution time of each task on each node is modeled as a
random variable. A resource allocation is considered robust if
the probability that all tasks complete by a system deadline is
at least 90%. To minimize the energy consumption of a specific
resource allocation, dynamic voltage frequency scaling (DVFS)
is employed. However, other factors, such as system overhead
(spent on fans, disks, memory, etc.) must also be mathematically
modeled when considering minimization of energy consumption.
In this research, we propose three different heuristics that employ
DVFS to minimize energy consumed by a set of tasks in our
heterogeneous computing system. Finally, a lower bound on
energy consumption is provided to gauge the performance of
our heuristics.

I. INTRODUCTION

Parallel and distributed systems may operate in an environ-

ment where certain system performance features degrade due

to unpredictable circumstances, e.g., inaccuracies in estimated

system parameters. Robustness can be defined as the degree

to which a system can function correctly when the values of

system parameters are different from those expected.

This research was supported by the National Science Foundation under
grant numbers CNS-0615170 and CNS-0905339, and by the Colorado State
University George T. Abell Endowment.

In this study, we mathematically model a heterogeneous

computing system and run simulations to evaluate potential

power-consumption performance improvement using dynamic

voltage and frequency scaling (DVFS). Our compute cluster

is assumed to be part of a larger warehouse scale computing

environment [6] such that even a modest improvement in

energy consumption within each single cluster will result

in large power savings at the warehouse level. In this data

center, each cluster consists of a single rack of heterogeneous

(different types of) compute nodes, where the performance

across nodes in the cluster varies substantially.

Performance is defined in terms of the time required to

complete the provided workload. Furthermore, the perfor-

mance of individual machines in this cluster is assumed to be

inconsistent [4]. That is, if machine A is faster than machine

B for a given task, that does not imply that machine A is

faster for all tasks.

By utilizing a heterogeneous mix of machines it may be

possible to increase the power efficiency of the data center.

Further, through careful allocation of resources, it may be

possible to reduce the energy required to complete a given

workload by its time constraint, thus reducing the overall

operating costs of the data center. To minimize energy con-

sumption of a specific resource allocation, DVFS is employed.

Because the performance and power efficiency of compute

nodes in this environment are heterogeneous, we require

resource allocation heuristics that are capable of leveraging

these performance differences to reduce energy consumption.

The goal of resource allocation heuristics in this environment

is to allocate a collection of independent tasks to machines

so that we minimize the energy required to complete the

workload, while ensuring that there is a high probability that

the entire workload completes by a system provided deadline.

978-1-4577-0476-5/11/$26.00 © 2011 IEEE AICCSA 201122

That is, the challenge is in attempting to minimize expected

energy consumption while not ignoring a conflicting constraint

on the execution time of the workload (i.e., there must be

a high probability that the entire workload completes by a

deadline).

The major contributions of this paper are: (a) a stochastic

robustness model for this environment, (b) three heuristics that

generate resource allocations that have a high probability of

processing a given workload by the provided deadline while

minimizing energy consumption, and (c) a lower bound on

energy consumption to gauge how the heuristics perform.

In the next section, we define the system model of the

compute cluster and workload. Based on this system model,

in Section III, we derive a robustness measure suitable for

this environment that quantifies the probability of meeting our

makespan constraint for a given resource allocation. Three

heuristics used to generate resource allocations that attempt to

minimize energy consumption while satisfying a robustness

constraint are proposed in Section IV. A lower bound on

energy consumption is given in Section V. Sections VI and

VII discuss the simulation setup and results collected for each

heuristic. Section VIII provides a discussion of related work.

Finally, conclusions are presented in Section IX.

II. SYSTEM MODEL

A. Compute Nodes and Power

A cluster consists of N compute nodes. Each compute node

i consists of ni multicore processors, where the value of ni
varies from one to four. Each multicore processor j in compute

node i has nij cores, where nij also varies from one to four.

Figure 1 shows the hierarchy of nodes, multicore processors,

and cores. For convenience, we let Ntotal denote the total

number of cores in the system (Ntotal =
N
∑

i=1

ni
∑

j=1

nij).

As defined in the Advanced Configuration and Power Inter-

face (ACPI), in our system there are five available processor

performance states (P-states) [2], and each core within a

node has an interface for switching P-states. While in current

systems all cores in a processor will have the same P-state, to

make our problem more complex and interesting, we consider

the future direction of allowing each core to be set to a P-

state individually. Each P-state corresponds to a voltage level

and clock frequency, and is subject to a corresponding power

consumption for maintaining that voltage level. To minimize

overhead of switching from one P-state to another, we assume

that once a core starts executing a task in a particular P-state,

it may not change P-states while the task is executing.

As power is increased to a core the performance of that

core also increases, i.e., task execution times decrease. Let P

denote the set of all available P-states where P0 corresponds

to the base P-state that has the lowest power consumption (and

lowest performance for that multicore processor). The power

consumed by state Pπ in compute node i is denoted ρ
(π)
i ,

where π ∈ {0, 1, 2, 3, 4}. When all multicore processors are

idle within a compute node, the node transitions to a hibernate

state, and that the node consumes no power. Because this is a

Fig. 1. Hierarchy of nodes, multicore processors, and cores.

static environment (see II-B), and all tasks are independent, a

core is not idle until all tasks assigned to it have completed,

after which the core shuts off. Similarly, a multicore processor

is not idle until the last core within that multicore processor

turns off, after which the multicore processor turns off.

In addition to the heterogeneity in performance, the compute

nodes of this cluster are heterogeneous in the power efficiency

of their respective power supplies. Power efficiency relates the

total power provided by the power supply to the actual power

that is supplied to the computing system. For example, for

every 80 watts of power provided by a non-perfect power

supply with an efficiency of 80%, that power supply would

require 100 watts of power. In our cluster, the efficiency of

power supplies varies from 75% efficient to at most 90%

efficient. Let ǫi denote the power efficiency of the power

supply in compute node i.

B. The Workload

The workload in this environment is a static collection

of T independent tasks (i.e., all tasks to be executed by

the system are known a priori), that must be completed

before a provided a deadline, denoted δ. We consider a static

production environment where the complete set of tasks to

be executed is known in advance, and that task execution

times may be data dependent (e.g., [21]). There is uncertainty

in task execution times and this uncertainty can be modeled

using a normal distribution. The mean and variance of this

normal distribution are determined by historical, experimental,

or analytical techniques [15], [21], [25]. The means of these

distributions will be used to calculate the expected makespan

of the workload in the next subsection and expected energy

consumption in Subsection II-D for a given resource alloca-

tion. In this system, the expected task execution times and task

variances vary across heterogeneous nodes. That is, we model

the execution time of each task on each compute node in each

P-state as a random variable and we are given a probability

23

density function (pdf) describing the probability of each of

the possible execution times.

As common in the research allocation literature, we con-

sider a non-multitasking environment (e.g., [9], [12]). Also,

potentially complex interactions between tasks executing on

neighboring cores that share resources, such as cache memory

interactions, are not explicitly modeled (but may be modeled

with the normal distributions of the task execution times).

C. Calculating Expected Makespan

Given a resource allocation calculating the expected

makespan requires that we first determine the expected finish-

ing time of each compute node given this resource allocation.

Because the tasks are independent, once we have established

the expected finishing time of each compute node, we can find

the expected makespan as the maximum of all of the expected

node finishing times.

Let the set Tijk denote all tasks in T that have been assigned

to core k on multicore processor j of compute node i, and
that tijk ∈ Tijk. Let the function pstate(tijk) return the

selected P-state for task tijk. Each entry in the expected time

to compute (ETC) matrix, denoted ETC{tijk, pstate(tijk)},
depends on the task to be executed, the core that is to execute

it, and the selected P-state for the core. The expected finishing

time of core k on multicore processor j in compute node i,
denoted Fijk is given as

Fijk =
∑

∀tijk∈Tijk

ETC {tijk, pstate(tijk)} . (1)

Therefore, the expected makespan of a resource allocation,

denoted ∆, can be found as the maximum expected finishing

time among all cores, multicore processors, and compute

nodes, and is given as

∆ = max
∀k∈nij

{

max
∀j∈ni

{

max
∀i∈N

Fijk

}}

. (2)

D. Calculating Expected Energy Consumption

The total energy required to process the workload is deter-

mined by summing the power consumption from the start of

the workload through the completion of the workload. Because

the P-state of each core may differ throughout the course of

the workload execution, we can find the power consumption

for each core in each P-state and sum over the time spent

in each P-state for that core. However, we would also like

to account for the overhead power consumption of an active

multicore processor (e.g., L3 cache) and an active compute

node (e.g., disk drives, fans, RAM). For example, Figure 2

gives typical server component energy consumption for three

sample systems and shows that system overhead can be a

significant component of overall energy consumption [17].

System overhead can consume lower percentages with respect

to total system energy, as seen in published reports such as

SPECpower ssj R© 2008 [1].

Let Tπ
ijk denote the subset of tasks assigned to core k on

multicore processor j of compute node i processed in P-state

Fig. 2. Server component energy usage, based on [17].

π, i.e., Tπ
ijk = {∀tijk ∈ Tijk|pstate(tijk) = π}. Because

this is a static resource allocation problem and all tasks are

independent, all tasks on a given core can be reordered such

that all tasks in P-state P0 execute first, all tasks in P1 execute

next, and so on for all P-states. Thus, the expected energy spent

by core k, within multicore processor j, in node i, in P-state

π, denoted Sπ
ijk, is given as

Sπ
ijk =

∑

tijk∈Tπ
ijk

ρ
(π)
i ETC {tijk, π} . (3)

To determine the total expected energy consumption of a

multicore processor, we wish to account for the overhead of

shared resources on the multicore processor during the time

that the multicore processor is active. Let Fij be the maximum

completion time among cores in multicore processor j on node
i, Fi be the maximum completion time among multiprocessors

in node i, ωMP
i be the power overhead of shared resources

for each multicore processor in compute node i, and ωnode
i

be the power overhead for compute node i. We can calculate

the expected energy required to process the entire workload

across all N compute nodes, denoted ζ, as

ζ =
N
∑

i=1

1

ǫi



Fiω
node
i +

ni
∑

j=1

(

Fijω
MP
i

)







+

ni
∑

j=1

nij
∑

k=1

∑

∀π∈P

Sπ
ijk



 .

(4)

III. ROBUSTNESS

A. Overview

Resource allocation decisions are often based on estimated

values of task and system parameters, whose actual values

are uncertain and may differ from available estimates [22].

A resource allocation can be considered “robust” if it can

mitigate the impact of uncertainties in system parameters on

a given performance objective [3]. That is, a robust resource

allocation can guarantee a certain level of system performance

under a wide range of conditions. Any claim of robustness for

a given system must be able to answer the following three

robustness questions [5]: (a) What behavior makes the system

robust? (b) What are the uncertainties that the system is robust

against? (c) How is system robustness quantified? These three

24

questions help establish an intuitive meaning for the robustness

of a system.

In this environment, a resource allocation can be considered

robust if it completes the entire workload within the makespan

constraint δ. Recall that the expected execution time for each

task on each machine is only an estimate and that the actual

execution time may vary based on the data being processed.

The stochastic robustness metric used in this paper is based

on the concepts presented in [21], [23]. Thus, the robustness

of a resource allocation can be quantified as the probability

that the makespan constraint will be satisfied [21].

Our answers, then, to the three robustness questions pre-

sented above are: (a) a given resource allocation is robust if

it completes the entire workload by the makespan constraint;

(b) the system is robust against uncertainty in task execution

times; and (c) the robustness of a resource allocation is

quantified as the probability of completing a given workload

by a system-provided deadline.

B. Calculating Robustness

Because all tasks are independent and all cores can operate

independently, the robustness of the system is the product of

the probability for each core in the compute cluster to finish

its assigned workload in at most δ time units. To simplify our

simulation calculations, we assume, without loss of generality,

that the execution time distributions for tasks are normally

distributed, possibly having different means and variances.

Convolution of two normally distributed random variables α
and β will produce a result that is also normally distributed,

where the mean is given as the sum of the means of α and β
and the variance is given as the sum of the variances for α and

β. Thus, we can use the expected finishing time computation

of Equation 1 to find the mean of the finishing time distribution

for each core. That is, given core k on multicore processor j in
compute node i, the mean of the finishing time distribution is

given as Fijk. To find the variance, let V [tijk, π] denote the

variance associated with task tijk executed on compute node

i, multicore processor j, core k, in P-state π. The variance,

denoted σ2
ijk, can be found as

σ2
ijk =

∑

∀tijk∈Tijk

V {tijk, pstate(tijk)} . (5)

Thus, the finishing time distribution can be expressed as

N (Fijk, σ
2
ijk). The probability that this core will finish before

δ can be found by converting the normal probability density

function N (Fijk, σ
2
ijk) to a cumulative density function and

finding the probability associated with a finishing time of δ.
Let CDF(f, δ) denote the probability of finishing before δ
using the cumulative distribution function of f . The overall

system robustness for a given resource allocation, denoted

Ψ, can be found by multiplying the robustness values for

each individual core together, because tasks and cores are

independent, and is found as

Ψ =
∏

∀i∈N

∏

∀j∈ni

∏

∀k∈nij

CDF
(

N (Fijk, σ
2
ijk), δ

)

. (6)

In this study we require resource allocations to meet a robust-

ness constraint of ψ ≥ 90%.

IV. HEURISTICS

A. Overview

The goal of the heuristics is to produce resource allocations

that minimize energy consumption while meeting a robustness

constraint of at least 90% probability or greater of completing

by the deadline δ. Because this is a static resource allocation

for a set of production applications known a priori, the

resource allocation is derived off-line before any of the tasks

begin execution. We adopted three different global resource al-

location heuristics to this environment: a Tree Search heuristic,

a Genetic Algorithm (GA) and, a Tabu search heuristic. We

also present two two-phase greedy heuristics, Min-Min and

Min-Max, that execute quickly and are used to seed some of

the global search heuristics.

B. Min-Min and Min-Max

The Min-Min and Min-Max heuristics (based on concepts

in [7], [11], [16]) greedily assign tasks to cores, making one

assignment per iteration, where all assignments use a single

fixed P-state. Initially, all tasks are “unmapped” (placed in

the unmapped batch). At each iteration of Min-Min or Min-

Max, the heuristic uses two phases to choose a single task-

to-core assignment. In the first phase of both heuristics, the

minimum expected completion time (MECT) core is found for

each task in the unmapped batch. In the second phase, Min-

Min chooses the task-core combination from phase one that

yields the smallest overall MECT for assignment and removes

the corresponding task from the unmapped batch. Min-Max

instead chooses the task-core combination from phase one that

yields the largest overall MECT for assignment and removes

the corresponding task from the unmapped batch. All core

ready times are then updated, and the heuristic begins another

iteration in phase one. Both heuristics iterate until all tasks

have been mapped (i.e., the unmapped batch is empty).

C. Tree Search

In our Tree Search (TS) heuristic based on [24], [27], the

set of all possible solutions is conceptually organized as a tree,

where each node in the tree corresponds to a task, machine,

and P-state assignment. Let T ′ denote a list of all tasks in

the order that the Min-Min heuristic would map them using

the highest P-state (P4), |P | denotes the number of available

P-states, and recall that Ntotal is the total number of cores

in the system. The tree has |T ′| + 1 levels, and each node

has m = |P | × Ntotal children. The root node of the tree

represents a null solution. There are Ntotal × |P | children for

each node corresponding to all of the cores at each possible

P-state, and a node at level L corresponds to mapping task

T ′
L to the corresponding core and P-state.

The Tree Search starts at the root node, marking it as

unexplored, and works its way down the tree by iteratively

expanding unexplored nodes. Only nodes that are both on the

current level L and marked unexplored are considered active

25

and are eligible for expansion. An active node is expanded by

marking each of its child nodes as unexplored and marking

it as inactive, but this expansion procedure quickly increases

the number of unexplored nodes. The heuristic execution time

is directly correlated to the number of unexplored nodes:

the execution time and memory requirements of the heuristic

become infeasible if too many nodes in the tree are marked as

unexplored. Therefore, our implementation utilizes a trimming

scheme to limit the number of unexplored nodes to β nodes. In

our experiments, the best results for Tree Search were achieved

by setting β to 40.

To trim the list of unexplored nodes, a cost function z(n)
is applied to each node n in the unexplored list. The expected

energy consumption of a partial mapping through node n is

denoted ζ(n). Let ∆n denote the expected makespan through

the current node n, let Ln denote the level of node n, and let

τ be a threshold indicating a desired upper bound on ∆ (in

our simulations, δ = 210 and τ was empirically set to 145).

Using these quantities, we define z(n) as

z(n) = ∆n −
Ln

|T |
· τ. (7)

Intuitively, z(n) indicates how far “ahead” (when z(n) < 0)
or “behind” (when z(n) > 0) the makespan of node n is with

respect to τ (assuming each task uses an equal portion of τ). To
trim, we create a list of unexplored nodes partitioned into two

groups: 1) nodes with z(n) < 0 and 2) nodes with z(n) ≥ 0.
The first partition is therefore composed of all partial mappings

that are “ahead” of τ , and these are ordered with increasing

energy consumption ζ(n). The second partition, located after

the first partition, is composed of all partial mappings that are

either on or “behind” schedule, and these are ordered with

increasing z(n). Out of this partitioned list, we keep the first

β nodes for further exploration, and delete the rest.

Once the last level of the tree is encountered, the node nbest

(the leaf node with the lowest energy consumption that meets

the robustness constraint) is selected for the final resource

allocation. The allocation is determined by tracing the path

of nbest back up the tree and deducing the task to core/P-state

assignments.

D. Genetic Algorithm

Our genetic algorithm (GA) is based on the concepts in

[10], [19], and attempts to probabilistically generate a resource

allocation by incrementally altering existing solutions and

removing poor ones. A fixed-size group of complete resource

allocations forms the population on which the GA operates.

These are random allocations that do not violate the robustness

constraint, and we add allocations from Min-Min using each

P-state to the population as seeds. The GA operates by proba-

bilistically forming new allocations from existing allocations,

and then sorting the new and previous allocations and keeping

the best. The GA executes for a fixed number of iterations,

denoted as maxiter (empirically set to 250,000), and then

returns the best allocation it encountered.

The population on which the GA operates consists of

chromosomes, where each chromosome represents a complete

mapping of every task. Each task assignment, also called a

gene, consists of a four-tuple denoting the node, multicore

processor (MP), and core assignment for the task, as well as

the P-state that the task will be executed. The chromosome

length (number of genes) is equal to the number of tasks in

the system.

Each chromosome in the initial population is generated

as follows, so that the robustness constraint is not violated.

For each task t, find the node i that minimizes the expected

execution time of task t in P-state P4, and map task t to

a random core k within node i if the expected completion

time of core k does not exceed a completion time threshold,

denoted as ctthresh (empirically set to 160). If ctthresh is

violated, map task t to another random core in node i, and
repeat until either the completion time is less than ctthresh
or there are no cores left in i to try. If there are no cores

left to try in i, map task t to the next node that minimizes

the expected execution time, repeating the above steps. If the

task cannot be assigned to any core in the system without

its completion time violating ctthresh, the task is mapped to

the core that gives its minimum expected completion time

(this never happened during our simulations). This process

is repeated until all tasks are mapped within a chromosome,

and the entire initial population is generated by repeatedly

creating chromosomes in the above manner. In addition to the

generated chromosomes, the GA is seeded with five Min-Min

chromosomes, one from each of the five P-states.

The GA limits the population size, denoted |C| (empirically

set to 100), after each operation by ranking the chromosomes

according to fitness value and eliminating the lowest-ranked

chromosomes such that the population size remains fixed at

its original size, similar to the Genitor heuristic [26]. Fitness

is determined in two steps. First, chromosomes are separated

into two groups: those that meet the robustness constraint,

followed by those that do not. Any chromosome that meets

the robustness constraint is more-fit than any chromosome

that does not. Within each group, the chromosomes are sorted

by their expected energy values (the expected energy needed

to compute the workload according to the mapping in the

chromosome). Therefore, the more-fit of two chromosomes

within the same group is the one that consumes the least

energy.

The crossover operation generates new genetic material by

probabilistically swapping task assignments between chromo-

somes. The number of crossover operations during a single

iteration of the GA is equal to the size of the population.

To begin each crossover operation, two parents are randomly

selected, and with probability pc (determined empirically to be

0.005), two offspring are generated. That is, a uniform random

number between zero and one is generated and compared

with pc. If the number is ≤ pc, then the crossover operation

continues; otherwise it is aborted. The operation uses a two-

point crossover operation to swap assignment information

between parents. Two crossover points x and y are generated

26

such that x < y and y < |T |. Then, all of the task-to-core/P-

state assignments in the first chromosome, from task x to task

y, are interchanged with the assignments from task x to task

y from the second chromosome. The chromosomes generated

by crossover are added to the population after all crossover

operations have completed in an iteration, and the least-fit

chromosomes are eliminated to bring the population size back

to |C|.
There are two mutation operators that generate new genetic

material by probabilistically altering task assignments: 1)

task-assignment mutation, and 2) P-state mutation. In task-

assignment mutation, each chromosome has a probability

ptm of being mutated (determined empirically to be 0.25).

If a chromosome is selected for mutation, each gene in

that chromosome has a probability ptmg of being mutated

(empirically set to 0.001). If a gene is mutated, the task

corresponding to that gene is assigned to a random core

and random P-state. The P-state mutation is very similar to

task-assignment mutation, except that each chromosome has a

probability ppm of being mutated (experimentally determined

to be 0.025), and each gene within a chromosome has a

probability ppmg (determined empirically to be 0.0005) of

being assigned a random P-state (only the P-state is changed).

The chromosomes generated by mutation are added to the

population after all mutation operations have completed in an

iteration, and the least-fit chromosomes are eliminated to bring

the population size back to |C|.
Once the GA completesmaxiter iterations, the chromosome

with the highest fitness is chosen as the resource allocation.

E. Tabu

The Tabu heuristic based on concepts in [7], [13], [18]

combines global search (“long-hops”) and local search (“short-

hops”) to gain the benefits of both. Each solution is repre-

sented as in the GA seen in the previous subsection. Each

unmodified long-hop is stored in a tabu list, indicating that

the neighborhood represented by that particular long-hop may

not be searched again. In our implementation of Tabu, two

solutions are in the same neighborhood when 50% or greater

of task-to-node assignments are the same between them. When

a neighborhood has been sufficiently searched by short hops,

long hops are used to escape local minima.

Multiple short-hops are executed after each long-hop to

find the “local minimum near the long-hop” solution, with

a maximum of maxSH short-hops per long-hop. Short-

hops are small, incremental changes around long-hops. The

heuristic executes a maximum number of long-hops, denoted

maxLH , and then returns the best allocation discovered. The

values for maxSH and maxLH were empirically set to 6,000

and 100, respectively.

In our implementation, we seed the Tabu search with the

Min-Min allocation where all tasks are scheduled in P-state

two (i.e., P2). All subsequent long-hops are generated by

assigning each task to a random node in a random P-state,

considering the tasks in a fixed, arbitrary order. Within each

node and P-state, the task is mapped to the core within

the node that gives the minimum expected completion time

(MECT). The purpose of long-hops is to jump to a new

neighborhood. Recall that the solutions generated by the long

hops must differ from all solutions in the tabu list by at least

50% for all task-to-node assignments. If the generated long-

hop does not fall within a new, unique neighborhood, a new

long-hop is generated.

We use three short hop sub-procedures: 1) meet-
robustness, 2) reassignment, and 3) swapping. For all of
these procedures, solution A is “better” than solution B if the

expected energy consumption of A is better (i.e., lower) and A
meets the robustness constraint, or if the expected makespan of

A is lower than the expected makespan ofB and the robustness

of B is < 90%. Each of these procedures is described below.

In the meet-robustness procedure, we iteratively attempt

to minimize makespan (which indirectly works toward meeting

the robustness constraint). For each iteration, the core that

has the largest finishing-time is selected, and then all tasks

on that core are unmapped. Next, the Min-Min heuristic

is performed on the unmapped tasks. If the core with the

maximum finishing-time is the same from the last iteration,

a random core is selected. The routine terminates when either

the mapping meets the robustness constraint or the number of

iterations meets maxSH .

The reassignment short hop mechanism iteratively at-

tempts to move tasks to other nodes. For each iteration, a

random task is selected for re-assignment to a different node.

When a task is considered for re-assignment, the MECT core

within that node is chosen. Each re-assignment that yields a

better solution is kept and the routine terminates when the

number of iterations reaches maxSH .

The swapping short hop mechanism iteratively attempts

to find the local best allocation by swapping tasks. For each

iteration, two random tasks are selected for swapping. The core

assignments of the first task and second task are swapped, and

random P-states are chosen for each. The swap is kept if the

solution improves. As with the previous short-hop procedures,

the routine terminates when the number of iterations meets

maxSH .

Pseudo-code for the entire Tabu heuristic is given in Algo-

rithm 1.

Tabu does the reassignment and swapping short-hops

twice for the following reason: Because each long-hop is

randomized, solutions generated by long-hops generally have

very low probabilities of completing by the system deadline.

The Tabu heuristic first attempts a local search around the

original long-hop by running a number of reassignment and
swapping short-hops. At this point, the modified solution is

still not likely to meet the robustness constraint. Therefore,

the heuristic then runs the meet-robustness short-hop pro-

cedure, which is very likely to make the solution meet the

robustness constraint. However, the meet-robustness short-

hop procedure does not directly attempt to minimize en-

ergy consumption. To remedy this, the reassignment and

swapping short-hop procedures are run again to try and

reduce energy consumption.

27

Algorithm 1 Pseudo-code for the Tabu heuristic

1: best ⇐ ∅
2: nLH ⇐ 0

3: while nLH < maxLH do

4: solution ⇐ next long-hop

5: solution ⇐ reassignment short hop

6: solution ⇐ swapping short hop

7: solution ⇐ meet-robustness short hop

8: solution ⇐ reassignment short hop

9: solution ⇐ swapping short hop

10: if solution is better than best then

11: best ⇐ solution

12: end if

13: nLH ⇐ nLH + 1
14: end while

V. LOWER BOUND ON ENERGY CONSUMPTION

We calculate a lower bound (LB) on expected energy

consumption for each simulation trial to help evaluate the

heuristics. The LB is based on two parts: (a) a LB on the

expected energy consumed by the execution of all tasks, and

(b) a LB on the expected energy consumed by overhead.

Note that our LB does not take the robustness constraint into

account.

The LB on energy consumed by tasks is found as follows.

For each task, find the node/P-state combination that mini-

mizes energy consumed by that single task, and sum over

all tasks. Let Htiπ be the expected energy consumption of

task t on node i (recall that all cores within a node are

homogeneous) in P-state π (not taking node efficiency into

consideration). This quantity is then divided by the maximum

node efficiency across all nodes. Let ζmin
tasks denote the LB on

energy consumption for part (a):

ζmin
tasks =

1

max
∀i

(ǫi)

∑

∀t∈T

min
∀i,π

(Htiπ). (8)

For part (b), assume that any task can execute on any node

using its minimum expected execution time over all nodes.

The sum of the minimum expected execution time values is the

minimum total task computation time for all tasks, Fmin. This

time must be divided among the available cores in the system,

and it should be divided in such a way that the expected energy

consumed by overhead is minimized.

Let Fsome denote the computation time on node i. The en-

ergy consumed by overhead within node i is a function of node
parameters and Fsome. Node parameters cannot change, but

we can decrease the computation time by parallelizing Fsome

as much as possible over the available cores in node i. When

we parallelize Fsome within node i, two effects occur. First,

the energy consumption due to node overheads decreases,

because the completion time of the node decreases from Fsome

to Fsome/(ninij). Second, the energy consumption due to

multicore processor overheads either stays the same or de-

creases. If there is only one core per multicore processor, then

the energy consumption due to multicore processor overheads

will remain constant, because the completion time of each

core decreases from Fsome to Fsome/(ni), but the multicore

processor overhead increases from ωMP
i to niω

MP
i . If there is

more than one core in each multicore processor of the node,

the energy consumed by multicore processor overheads will

decrease with decreasing Fsome.

From the above, it should be easy to see that it is always

best to fully parallelize computation time within a node to

minimize the energy consumed due to overhead. If we can

perfectly parallelize computation time within a node i, then
the completion time of node i (Fi) will be minimized. Also,

because we have perfectly parallelized the computation time,

Fi = Fij for all multicore processors within node i. Thus, we
can express the overhead power consumption for any node i,
denoted ωtotal

i , as

ωtotal
i =

ωnode
i

ǫi
+
niω

MP
i

ǫi
. (9)

If we let F
(i)
total denote the sum of the expected execution time

values of the tasks assigned to node i, then we can express

the total overhead energy consumption for node i, denoted

ζ
(i)
overhead, as

ζ
(i)
overhead =

F
(i)
total

ninij
× ωtotal

i . (10)

We can use the above equations with our earlier assumption

that a task can execute on any node in its minimum execution

time to easily bound the energy consumption due to overheads.

At least Fmin time must be spent computing, and the com-

putation can be spread over any number and configuration of

nodes. However, if there is a node with the smallest value

of ωtotal
i /ninij among all nodes, then executing the entire

workload on that node will result in the minimum energy

consumption from overheads. This is because, although the

workload could be partitioned among q other nodes, executing
on those q nodes for a duration of Fmin/q will have a

higher energy consumption than executing on the minimum

overhead node for Fmin and having no other overhead energy

consumption.

From the above, we can derive the LB on energy consump-

tion for part (b), denoted ζmin
overhead, as

ζmin
overhead =

∑

ti∈T

min
∀iπ

(ETC{ti, π})×

min
∀i

(

ωtotal
i

ninij

)

.

(11)

Finally, the LB on expected energy consumption, denoted

ζmin is

ζmin = ζmin
tasks + ζmin

overhead. (12)

28

VI. SIMULATION SETUP

To test the heuristics, 50 unique simulation trials were

generated. For all trials, the number of tasks was set to 4000.

Between simulation trials, only the means and variances of the

task execution time distributions for each P-state in each node

differed. All other parameters were held constant.

The cluster consisted of 25 compute nodes (N), where each

node incorporated from one to four multicore processors (ni),
and each multicore processor included one to four cores (nij).
Also, the makespan constraint, δ, was set to 210 time units.

The mean and variance values of the task execu-

tion time distributions for each P-state in each node

(ETC {tijk, pstate(tijk)} and V {tijk, pstate(tijk)}, respec-

tively) were generated using the Coefficient of Variation

(COV) method from [4] and a scaling procedure. More specifi-

cally, the mean values for all task execution times on all nodes

in the lowest P-state were generated using the COV method,

and the values were then scaled by a random number between

0.9 and 0.95 to obtain the mean values for all task execution

times on all nodes in the second P-state. This procedure

was then repeated for the remaining P-states to generate the

remaining mean values. The variance values were generated in

a similar manner, where the COV method was used to generate

the variance values for all task execution times on all nodes

in the highest P-state, and a random scaling factor between

1.05 and 1.10 was used to scale the variance values for all

task execution times on all nodes in the remaining P-states. In

this way, both the mean and variance of each task execution

time on a given node decreases with increasing P-state.

The power consumption values for each node and P-state

(ρ
(π)
i) and efficiency values for each node (ǫi) were generated

once. Node efficiency values for each of the 25 nodes were

chosen by sampling a uniform distribution with values from

0.75 to 0.90. Power consumption values for each node in

each P-state were chosen in two phases. In the first phase,

the power consumption value for each node in its lowest P-

state was chosen by sampling a normal distribution with an

empirically-determined mean and variance. The power con-

sumption values for each node in its highest P-state were also

chosen by sampling a normal distribution with an empirically-

determined mean and variance. In the second phase, the power

consumption values for each node and the remaining P-states

were obtained by interpolating the values along a quadratic

curve, that forced all power consumption curves to follow a

quadratic shape.

Finally, the node and multicore processor overhead values

for each node (ωnode
i and ωMP

i , respectively) were generated

by sampling a uniform distribution. The bounds on the uniform

distribution were carefully selected such that the total average

overhead energy comprised approximately 30% of the total

energy consumed by the system. In our trials, these values

ranged from 20-30W for ωnode
i , and 10-20W for ωMP

i .

VII. RESULTS

A box and whiskers plot of the expected energy consump-

tion is shown in Figure 3 for each of the heuristics. Data

collected over the 50 simulation trials is summarized within

the box and whiskers: the bounds of the box represent the first

and third quartiles, the line in between them represents the

median, and the whiskers represent the minimum/maximum

values. The Min-Max heuristic is not shown because it ex-

hibited the same general behavior as the Min-Min heuristic

except with slightly worse performance. For comparison, the

lower bound is shown as well to provide insight into how

well each heuristic performed overall. In addition, the expected

makespan and robustness values are presented in Figures 4 and

5 respectively.

Fig. 3. Expected energy consumption for each heuristic, with the Min-Min
heuristic run in each P-state.

First, consider the behavior of the Min-Min heuristic in the

various different P-states. As expected, lower P-states result

in lower total expected energy and higher expected makespan.

However, the reduction in energy for task execution in lower

P-states is offset by the increased energy consumption due to

node and multicore processor overhead. That is, because lower

P-states have longer execution times, this overhead is incurred

over a longer time period so that there are diminishing returns

in terms of reducing total energy consumption. In P-state one,

Min-Min is unable to satisfy the robustness constraint of 90%,

as can be seen in Figure 5. However, P-state two is not only

able to meet the robustness constraint but also achieves a

relatively low level of expected energy consumption. However,

there is still room for improvement because the robustness is

not at its constraint. Clearly, because having all of the tasks

executing in P-state one violates the robustness constraint, a

combination of different P-states should be able to improve

expected energy consumption while driving the robustness to

its constraint.

In terms of non-greedy heuristics, the tree-search algorithm

actually performed slightly worse than the Min-Min in P-state

two. It also did not result in allocations that just met the robust-

ness constraint. One reason for this may be due to the limited

number of active nodes. That is, in this implementation of

tree search, the maximum number of active nodes was limited

to 40, because for values any higher than this, the heuristic

overruns the available memory. However, the performance of

tree search may improve with a larger active node count. In

addition, considering more levels in the tree simultaneously

29

and/or modifying the criteria for which nodes to explore may

also improve its performance.

Tabu is slightly better than Min-Min because its best so-

lutions were typically found after it had completed all of

the short hop procedures on the initial Min-Min seed. The

resulting solution was on average approximately 5% better

than the Min-Min P-state two solution. Tabu achieved this

result by driving the robustness to its constraint. Unfortunately,

the pure random solutions found by the long hops within Tabu

generally failed to meet the robustness constraint. Therefore,

all of the short hops were used to repair the long hop solutions

to meet the robustness constraint rather than for minimizing

expected energy consumption.

The GA heuristic was the clear winner, in that it achieved

the lowest expected energy consumption while exactly meeting

the robustness constraint. It is interesting to note that the

median expected energy consumption is comparable to that

of the Min-Min in P-state one despite the fact that the median

robustness of Min-Min in P-state one is less than 4% while the

median robustness of the GA solution is 90%. The GA result

is still significantly higher than the lower bound, but this may

be due more to the looseness of the bound than the quality

of the GA solution. This conjecture is reinforced by the result

of the P-state zero Min-Min solution that failed to meet the

robustness constraint but provided the lowest expected energy

consumption.

Fig. 4. Expected makespans for each heuristic, with the Min-Min heuristic
run in each P-state.

VIII. RELATED WORK

The problem of mapping a set of independent tasks while

trying to minimize energy consumption has been previously in-

vestigated in [8]. The goal in [8] was to statically allocate tasks

to a multiprocessor system and minimize energy consumption.

However, in contrast to our paper, there was no constraint on,

or optimization of, the makespan of the set of tasks executed.

Also, execution times were modeled using expected values,

while we model task execution times as random variables.

In [20], a method was introduced for allocating dependent

tasks onto multiple embedded processing elements that lever-

aged variable dynamic voltage scaling (DVS). The research

used a pair of nested genetic algorithms to determine a

Fig. 5. Robustnesses for each heuristic, with the Min-Min heuristic run in
each P-state.

schedule for multiple task graphs and optimize the system

energy consumption. However, unlike our system, task exe-

cution times were known exactly. Further, a variable-voltage

DVS system was assumed, so that any voltage level could be

provided to tweak task execution times, as opposed to being

limited to discrete P-states, specified in the ACPI standard

[2] that we use. Additionally, the work in [20] focused

on decreasing energy consumption by using DVS to fill

slack in precedence-constrained schedules while not violating

individual task deadlines, whereas our research focuses on

scheduling a large set of tasks to optimize energy consumption

under a makespan constraint, and includes overhead power

consumption.

Similar to [20], the environment in [28] is that of dependent

tasks executing across multiple homogeneous processors. Task

dependencies are modeled as direct acyclic graphs (DAGs)

and the goal of that research is to minimize the total energy

consumed by all tasks, employing DVFS to help achieve

this goal. In [28], a two-phase framework is developed to

schedule the set of tasks onto the processors. However, [28]

does not place any constraint on the execution time of the

set of tasks being executed. Also, the processors in [28] are

homogeneous, unlike in this study where our model possesses

multiple heterogeneous compute nodes.

In [14], a point is made that when considering minimization

of energy with a collection of tasks, there is a trade-off

between energy consumption and makespan. In that research,

an objective function is proposed in an attempt to balance

energy consumption and makespan. However, this is different

from our research in that in [14] no constraint is placed on

energy consumption or makespan. Furthermore, [14] does not

address issues of uncertainty or robustness.

IX. CONCLUSIONS

In this research, we consider the problem of robust resource

allocation in a heterogeneous cluster. The goal of the resource

allocation heuristics is to minimize energy using DVFS for

executing a set of tasks while maintaining a quantifiable

probabilistic guarantee on completing the tasks by a common

deadline. We designed a model and measure for stochastic

30

robustness that quantifies the reliability of an allocation to

complete by a given deadline, and used the measure in

three novel resource allocation heuristics. Finally, a lower

bound on energy consumption was designed to help gauge

the performance of each heuristic.

Our initial findings indicates the promise of the GA heuris-

tic. For future work, we would like to integrate a memory

hierarchy model into our environment. We also would like to

model task execution times as general pdfs instead of normal

distributions.

REFERENCES

[1] SPECpower ssj2008. [Online]. Available: http://www.spec.org/power
ssj2008/results/power ssj2008.html

[2] Advanced Configuration and Power Interface Specification, Std. 4.0a,
2010.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring
the robustness of a resource allocation,” IEEE Trans. Parallel and

Distributed Systems, vol. 15, no. 7, pp. 630–641, Jul. 2004.
[4] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Representing

task and machine heterogeneities for heterogeneous computing systems,”
Tamkang J. of Science and Engineering, Special 50th Anniversary Issue,
vol. 3, no. 3, pp. 195–207, Nov. 2000.

[5] S. Ali, A. A. Maciejewski, and H. J. Siegel, “Perspectives on robust
resource allocation for heterogeneous parallel systems,” in Handbook

of Parallel Computing: Models, Algorithms and Applications, S. Ra-
jasekaran and J. Reif, Eds. Boca Raton, FL: Chapman & Hall/CRC
Press, 2008, pp. 41–1–41–30.

[6] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Intro-

duction to the Design of Warehouse-Scale Machines, 1st ed. Morgan
& Claypool Publishers, 2009.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F. Freund, D. Hensgen,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and
B. Yao, “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,”
J. of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837,
Jun. 2001.

[8] P.-C. Chang, I.-W. Wu, J.-J. Shann, and C.-P. Chung, “Etahm: An
energy-aware task allocation algorithm for heterogeneous multiproces-
sor,” 45th Design Automation Conf. (DAC ’08), pp. 776–779, 2008.

[9] A. Dogan and F. Özguner, “Genetic algorithm based scheduling of
meta-tasks with stochastic execution times in heterogeneous computing
systems,” Cluster Computing, vol. 7, no. 2, pp. 177–190, Apr. 2004.

[10] S. Hartmann, “A self-adapting genetic algorithm for project scheduling
under resource constraints,” Naval Research Logistics, vol. 49, no. 5,
pp. 433–448, 2002.

[11] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” J. of the ACM, vol. 24,
no. 2, pp. 280–289, Apr. 1977.

[12] A. Kumar and R. Shorey, “Performance analysis and scheduling of
stochastic fork-join jobs in a multicomputer system,” IEEE Trans. on

Parallel and Distributed Systems, vol. 4, no. 10, Oct. 1993.

[13] Y. M. Lam, J. G. F. Coutinho, W. Luk, and P. H. W. Leong, “Integrated
hardware/software codesign for heterogeneous computing systems,” 4th

Southern Conf. on Programmable Logic 2008, pp. 217–220, 2008.
[14] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for

precedence-constrained applications using dynamic voltage scaling,” 9th

IEEE/ACM Int’l Symposium on Cluster Computing and the Grid, pp.
92–99, 2009.

[15] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and D. W. Watson, “De-
termining the execution time distribution for a data parallel program in
a heterogeneous computing environment,” J. of Parallel and Distributed

Computing, vol. 44, no. 1, pp. 35–52, Jul. 1997.
[16] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,

“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” J. of Parallel and Distributed Computing, vol. 59,
no. 2, pp. 107–121, Nov. 1999.

[17] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
server idle power,” SIGPLAN Not., vol. 44, no. 3, pp. 205–216, 2009.

[18] Z. Michalewicz and D. B. Fogel, Eds., How to Solve It: Modern

Heuristics. New York, NY: Springer-Verlag, 2000.
[19] A. M. Rahmani and M. A. Vahedi, “A novel task scheduling in

multiprocessor systems with genetic algorithm by using elitism stepping
method,” Int’l J. of Computer Theory and Engineering, vol. 1, no. 1,
pp. 1–6, 2009.

[20] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping
and scheduling for DVS enabled distributed embedded systems,” 2002

Design, Automation and Test in Europe Conf. and Exhibition (DATE

’02), pp. 514–521, 2002.
[21] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic

robustness metric and its use for static resource allocations,” J. of

Parallel and Distributed Computing, vol. 68, no. 8, pp. 1157–1173, Aug.
2008.

[22] J. Smith, H. J. Siegel, and A. A. Maciejewski, “Robust resource
allocation in heterogeneous parallel and distributed computing systems,”
in Wiley Encyclopedia of Computer Engineering, B. W. Wah, Ed. John
Wiley & Sons, Hoboken, NJ, 2009, vol. 4, pp. 2461–2470.

[23] J. Smith, E. K. P. Chong, A. A. Maciejewski, and H. J. Siegel,
“Stochastic-based robust dynamic resource allocation in a heteroge-
neous computing system,” 38th Int’l Conference on Parallel Processing

(ICPP-2009), Sep. 2009.
[24] S. L. Suchita Upadhyaya, “Task allocation in distributed computing vs

distributed database systems: A comparative study,” Int’l J. of Computer
Science and Network Security, vol. 8, no. 3, pp. 338–346, 2008.

[25] L. Wasserman, All of Statistics: A Concise Course in Statistical Infer-

ence. New York, NY: Springer Science+Business Media, 2005.
[26] D. Whitley, “The genitor algorithm and selective pressure: Why rank-

based allocation of reproductive trials is best,” 3rd Int’l Conf. on Genetic

Algorithms, pp. 116–121, Jun. 1989.
[27] M. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static mapping

algorithm for meta-tasks on heterogeneous computing systems,” 9th

IEEE Heterogeneous Computing Workshop, pp. 375–385, Mar. 2000.
[28] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage

selection for energy minimization,” 45th Design Automation Conf. (DAC

’08), pp. 183–188, 2002.

31

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
