
Robust Resource Allocation of
DAGs in a Heterogeneous Multicore System

Luis Diego Briceño1, Jay Smith1,3, Howard Jay Siegel1,2,
Anthony A. Maciejewski1, Paul Maxwell1,4, Russ Wakefield2,

Abdulla Al-Qawasmeh1, Ron C. Chiang1, and Jiayin Li1

Colorado State University 3DigitalGlobe 4United States Army
1 Department of Electrical and Longmont,CO,80503

Computer Engineering
2 Department of Computer Science

Fort Collins,CO 80523

Email: ldbricen@colostate.edu, jtsmith@digitalglobe.com,
{hj, aam, paul.maxwell, russ.wakefield, abd, chilung, lijiayin}@colostate.edu

Abstract—In this study, we consider an environment
composed of a heterogeneous cluster of multicore-based
machines used to analyze satellite images. The workload
involves large data sets, and is typically subject to deadline
constraints. Multiple applications, each represented by a
directed acyclic graph (DAG), are allocated to a dedicated
heterogeneous distributed computing system. Each vertex
in the DAG represents a task that needs to be executed and
task execution times vary substantially across machines.
The goal of this research is to assign applications to
multicore-based parallel system in such a way that all
applications complete before a common deadline, and
their completion times are robust against uncertainties
in execution times. We define a measure that quantifies
robustness in this environment. We design, compare, and
evaluate two resource allocation heuristics that attempt to
maximize robustness.

I. INTRODUCTION

We consider a heterogeneous computing (HC) system
based on multicore chips used to analyze satellite data.
The data processing applications used in the analysis
typically require computation on large data sets, and
their execution may be subject to a completion deadline.
Multiple applications, each represented as a directed
acyclic graph (DAG) of tasks, are to be assigned to an
HC system for execution. The goal of this study is to
assign tasks to processors in such a way that all ap-
plications complete before a common deadline, and the
application completion times are robust against uncer-
tainties in task execution times. We define a measure of
robustness in this context, and we design, compare, and

This research was supported by the NSF under grants CNS-0615170
and CNS-0905399, and by the Colorado State University George T.
Abell Endowment.

evaluate two resource allocation heuristics that attempt
to maximize robustness.

The simulation environment used to compare and
evaluate these heuristics is motivated by similar systems
in use at DigitalGlobe± and the National Center for
Atmospheric Research (NCAR�). In these systems,
data from a satellite is received and distributed to
storage units in the satellite data processing HC system,
where there are: (a) heterogeneous hard drive (HD)
access rates, (b) different computational capabilities
across compute nodes, and (c) different data set sizes.
This satellite data processing system has the following
characteristics: (a) the initial allocation of satellite data
to HDs is determined by the heuristic, (b) there is limited
RAM available at each machine, (c) data items have
to be explicitly staged and removed from RAM, (d)
some tasks can be executed using parallelization, and
(e) transfer times between HD and RAM must be taken
into account. The simulation environment models this
HC system and the applications.

Each application only requires a subset of the total
collection of data that is downloaded from the satellite.
Resource allocation in this environment requires both
selecting a location within the system to store each
satellite data item and mapping tasks to compute nodes
for execution. All applications and their required satellite
data items are known prior to the satellite collecting the
data, so this is an instance of a static resource allocation
problem [1]. The general mapping problem is NP-
complete [6], [8], [11]; therefore, heuristics are required

± http://www.DigitalGlobe.com/
� http://www.ncar.ucar.edu/

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

RAMj

PEj,1

HDj

n
e

tw
o

rk

PEj,j

PEj,i
•ti

n
e

tw
o

rk

Fig. 1. In this figure, the composition of compute node j is illustrated.

to obtain a near-optimal allocation in a reasonable time.
Our contributions are: (a) a model and simulation of

a complex multicore-based data processing environment
that executes data intensive applications, (b) a robustness
metric for this environment, and (c) resource allocation
heuristics to maximize robustness using this metric.

In the next section, we will describe the problem
statement. Two new heuristics are defined in Section III.
The related work is discussed in Section IV. Section V
and VI provide the results and conclusions, respectively.

II. PROBLEM STATEMENT

A. System Model

The goal of resource allocations in this environment is
to complete all applications before a common deadline
(∆). Let appk be the k

th application. Each appk is
divided into Tk tasks, represented by a DAG. In the
DAG, entry tasks require only satellite data and exit tasks
produce final results that must be stored on an HD.

Tasks may require both satellite data sets, denoted
SDi, and data sets produced by other tasks, denoted
TDi. Within a compute node α, a data set can be
located in either RAM or HD. The location of a data
set (TD or SD) within a compute node α is denoted
locα, i.e., locα ∈ {RAMα, HDα}.

This HC system is composed of N compute nodes,
where each compute node j has dedicated storage
(DSj), composed of RAMj and HDj . Each compute
node also has one to eight processing elements (PEs),
and each PE may only execute one task at a time (i.e., no
multi-tasking). Each node is comprised of a collection of
multicore chips. The PEs within a compute node are ho-
mogeneous, but across compute nodes PEs are assumed
to be heterogeneous. Each compute node j has νj PEs
where the x

th PE is denoted PEj,x(1 ≤ x ≤ νj), and
the total number of PEs across all compute nodes is
M (M =

�
N

j=1 νj). The composition of a compute
node j is shown in Figure 1.

In each compute node, the RAM storage space is
limited and may be unable to store all needed data
sets simultaneously; however, each HD is assumed to
be large enough to store any SDs and TDs assigned to
it. If a TD in RAM is to be released, but is required later
as an input to a task, then it must be copied to the HD.

node1 node2 nodeN…

Fig. 2. In this figure, an illustration of HiPPI network is shown.

Because all SDs are initially stored on HDs, SDs do not
need to be saved to the HD before being overwritten in
RAM.

All the input data sets required by a task must be
in local RAM before the task can start executing, and
must remain in RAM until its execution is finished.
The storage space in RAM for the output of a task
must be locally reserved before it begins execution. In
this system, all PEs on the same compute node share
dedicated storage and network access. The time to access
local RAM from a PE is assumed negligible; but HD
access is not, and is different for a read or a write.

The network topology used for this study is a high
performance parallel interface (HiPPI) crossbar switch
(Figure 2). Each compute node may simultaneously
transmit and receive one data set at a time, but may not
broadcast. The transfer rate of data from one compute
node to another depends on the data’s location in both
the source and the destination, i.e., RAM or HD.

Because there are two locations where data may be
stored and two compute nodes involved in the transfer,
there are four cases. In the first case, we wish to transfer
data from RAM on a source compute node to RAM on
a destination compute node. This transfer is only limited
by network bandwidth (the same for all compute nodes)
because the bandwidth to RAM is always greater. In
the second case, the transfer rate of data from the HD
on the source compute node to RAM on the destination
compute node is limited by the smaller of the network
bandwidth and the read bandwidth of the source HD. In
the third case, the transfer rate of data from RAM on a
source compute node to HD on a destination compute
node is limited to the smaller of the network bandwidth
and the write bandwidth of the destination HD. In the
fourth case, the transfer rate of data from a HD on
the source compute node to the HD on the destination
compute node is limited by the smaller of the network
bandwidth, the read bandwidth from the source HD
and the write bandwidth to the HD on the destination
compute node.

For each task ti, we assume that an estimated time

SD6

t1

t3

SD1

TD2 SD4

PE1,1node1

t6

SD8

TD7

TD3 node3

PE2,1

node2

Fig. 3. This figure shows a diagram of a DAG. The PE shown
in compute node 1 (PE1,1) is executing t1 that requires SD1 from
compute node 3. In this case, TD3 and TD7 on compute node 1 need
to be transmitted to compute node 2 for t6. The result of t6 must be
stored in an HD of the system, and the time to store the result must
be considered when calculating the makespan.

to compute on each compute node j has been provided,
denoted ETC(i, j), possibly determined from past task
execution times, which is a common assumption (e.g.,
[5], [7], [9], [12], [13], [19], [22]). The goal of this
study is to assign tasks to PEs so that unexpected
increases in the estimated task computation times do not
cause the total time required to complete all applications
(makespan) to exceed ∆. See Figure 3 for an example
of a resource allocation of a DAG.

A subset of the tasks are designed to be decomposable
for parallel execution within a single compute node.
Each decomposable task is assigned a divisor value that
indicates how amenable the task is to parallel processing,
ETCparallel(i, j) = ETC(i,j)

divisor
. Tasks are grouped into

good parallel tasks and poor parallel tasks. The divisor
values we use in the simulations are shown in Table I.

B. Robustness

A resource allocation is robust if it meets a given
performance criterion and is able to maintain this per-
formance despite unexpected perturbations [4] (e.g.,
[16], [20]). To quantitatively compare robustness among
different possible resource allocations, three questions
about robustness must be answered [3]: (1) What be-

havior of the system makes it robust? Our system is
robust if all applications complete before a common
deadline ∆. (2) What uncertainties is the system robust

against? The uncertainty is the relationship between the
estimated execution time of each task and the actual

data dependent execution time of each task. (3) Quanti-

tatively, exactly how robust is the system? The robustness
of a given resource allocation is the smallest common
percentage increase (ρ) for all task execution times that
causes the makespan to be equal to the deadline ∆. Thus,
the robustness metric ρ is maximized for this study.
In general, minimizing makespan will not maximize
robustness. An example of a resource allocation is shown
in Figure 4.

C. Performance Metric

Robustness cannot be calculated just by using the
estimated makespan of a resource allocation because of
the complexity introduced by the inter-compute node
data transfers, i.e., robustness is different from just
increasing the makespan by ρ.

In a real system, the execution times of all tasks will
not be increased by the same percentage. However, ρ

can be used as a suitable measure for robustness in
this environment—it can be viewed as a worst-case
guarantee.

The performance metric for this study is the robust-
ness ρ. Due to the complexity of the environment, it
is difficult to identify a closed-form expression for the
robustness of a resource allocation. Thus, an iterative
search procedure is used.

We define the makespan with a λ% increase in execu-
tion times as makespanλ. One procedure to calculate
λ, such that makespanλ = ∆, is to multiply all the
estimated task execution times by 1 + λ. Then, using
a binary search, the value of λ is found to the nearest
percent. The starting upper value of λ for the binary
search is an upper limit on λ (ULλ).

ULλ for the binary search is calculated as follows.
For each PE, sum the ETC values of the tasks assigned
to that PE. Let µ be the maximum value of these sums
among all PEs. The starting value for the binary search
is:

ULλ =
∆
µ
− 1. (1)

The binary search will go between 1% and ULλ. For
each iteration of the binary search, we calculate the
makespan (including communication) until you find the
value of λ (to the nearest percent) gives makespanλ =
∆.

III. HEURISTICS

A. Dynamic Available Tasks Critical Path (DATCP)

The DATCP heuristic (based on the concept of Dy-
namic Critical Path (DCP) [15]) uses the idea that with
an infinite number of processors an application cannot
execute any faster than its critical path length. Without
loss of generality, assume that all of the entry nodes

TABLE I
TABLE SHOWING THE DIVISOR FOR PARALLEL TASKS

number of PEs in use
types of parallelism 1 2 3 4 5 6 7 8

divisor for good parallel tasks 1 1.75 2.5 3.25 4 4.75 5.5 6.25
divisor for poor parallel tasks 1 1.5 2 2.5 3 3.5 4 4.5

i

d

g
h

ti
m

e

a’

i’

d’

g’ h’

c’

ti
m

e

f

f’
e

e’

makespan

PE1,1 PE2,1 PE3,1

a
b

c

ti
m

e

PE1,1 PE2,1 PE3,1

a’
b’

c’

(a) (b)

Fig. 4. In this figure, an example of a resource allocation is shown. Each of the execution times for the tasks in (a) is increased by 50%
with the results shown in (b). Note that the communication times do not increase, and the makespan for (b) (equal to ∆) is much less than
makespan in (a) increased by 50%. In (a), the makespan PE is PE3,1. After all task execution times are increased by 50%, PE3,1 is no longer
the makespan PE. This example intuitively shows how the makespan is not a good measure of robustness in an environment with inter-task
communication.

(1) Let ti = texit

(2) Calculate SD estimated transfer time to ti (size of SD divided by the average bandwidth time from
HD).

(3) Calculate average task execution time (AET (ti)).
(4) Calculate TD estimated transfer time to successor nodes (size of TD divided by network transfer

bandwidth).
(5) Determine the maximum time from any successor (child) node to the texit (maxtime).
(6) The critical path value is the sum of TD and SD data transfer times, maxtime, and AET (ti).
(7) Select another task (whose successors have a calculated critical path value) and go to step (2) until all

tasks are processed.

Fig. 5. Procedure used to calculate the critical path of the DATCP heuristic.

of all application DAGs have a common predecessor
that is the pseudo-vertex entry task tentry . Similarly,
assume there is a unique exit node texit. The calculation
of the critical path is a recursive process that begins
with texit and finishes at tentry . Each task calculates its
execution time to texit and then passes this time value
to its predecessor tasks. The execution time for a task is
calculated using the average values across all compute
nodes. We define the average execution time of ti as
AET (ti), and calculate it as follows:

AET (ti) =
�

N

j=1 ETC(i, j) · νj

M
. (2)

To estimate the transfer times, two average band-

widths are used: (a) the average bandwidth time from
the HD is the average read bandwidth of all compute
nodes, and (b) the network transfer bandwidth is used
to estimate the TD being sent across the network. The
pseudo-code for the critical path calculation method is
in Figure 5.

The next step of the heuristic determines the list of
available tasks, which are entry tasks or tasks whose
predecessors have been mapped. The available task with
the maximum critical path time is then mapped to the
compute node that maximizes the robustness value ρ.
That task is then removed from the list of mappable
tasks and the process is repeated until all tasks are
mapped. The pseudo-code for this algorithm is listed

(1) Calculate the critical path for each application.
(2) Dynamically create a list of all tasks available for mapping.
(3) Determine the task with the longest critical path from the list of available tasks.
(4) For task ti determined in (3),

(a) For each PE k in each compute node j, calculate the robustness of PEj,k if ti were mapped to
node j (see Section III-A3 for details about SD placement).

(b) Find the compute node j with the highest number of maximum-robustness-value PEs (it is possible
for other PEs to have the same robustness value). This compute node is denoted nodemax.

(c) Schedule communication transfer from predecessor tasks and satellite data transfer to nodemax.
(d) Map task to the PE (or PEs) with the maximum robustness (see Section III-A2 for details).
(e) Remove task ti from list.

(5) Repeat steps (2)–(4) until all tasks are mapped.

Fig. 6. DATCP heuristic procedure used to generate a resource allocation.

in Figure 6. If two possible assignments have the same
robustness, then DATCP selects a PE within the compute
node where the most PEs have the same robustness.

1) Memory Management: The heuristic schedules
data set transfers as required by the resource allocation.
When a task is considered for scheduling, the available
space in RAM is determined to decide if the task and the
input data it requires can be stored in RAM immediately,
i.e., is there enough space in RAM. If there is not enough
space, the heuristic checks when the task’s input data
sets can be moved into memory and schedules it to start
execution at that time.

If a data set is transferred from a compute node
i to a compute node j and there is space available
in RAMj , then it is transfered directly into RAMj .
If space is not available in RAMj , then the data is
moved to HDj . When evaluating which data sets can
be removed from RAM, the algorithm selects data sets
that are not currently being used, and have the fewest
remaining tasks that require them (TDs are copied to the
HD to avoid lost data).

2) Parallelizable tasks: Two approaches are studied
for step 4(d) in Figure 6 of the DATCP heuristic. For
the first approach, no parallelization is used. For the
second approach (“max” approach), the heuristic always
parallelizes tasks to multiple PEs within a compute node.
Initially, the PEs that have the maximum robustness
value are determined (calculated using the execution
time with only one PE executing the task). We then
determine which compute node has the most PEs with
the maximum robustness value (multiple PEs across
compute nodes can have the same robustness value), and
map the task to all PEs, in that compute node, that share
the maximum robustness value.

3) Satellite Data Placement: The satellite data sets
are mapped by the heuristic in a simple manner. The
first time an SD is required and the storage location of
the SD has not been determined, the data set and the task

3

0 0

4

11 19

3

10 10

2

9 14

8

7
6

3
5 8

5

AETi

AESTi ALSTi

average
communication
time(TD)

t1

t2 t3 t4

t
1

18 26

5

21 21

3

31 31

4 5

time(TDi) t5
t6

t7

Fig. 7. Figure showing an example of AEST and ALST computation.
The AEST is calculated first starting from t1 to t7. After all the AESTs
are calculated, the ALST of t7 is set to the AEST of t7 (in this case
31), and the ALST of the all the tasks from t7 to t1 is calculated.

that requires it are mapped to the same compute node,
and then the robustness value is determined. The task
is assigned to the PE that maximizes robustness, and
the SD is stored in the HD of this PE’s corresponding
compute node. Subsequent tasks requiring the data set
are limited to the mapping determined by this initial
task.

B. Heterogeneous Robust Duplication (HRD)

Heterogeneous Robust Duplication (HRD) is based
on the concept of the Highest Critical Parents with Fast
Duplication introduced in [10]. The algorithm has a
listing phase, where tasks have their priority computed
and are inserted into a queue based on that priority. The
algorithm then assigns tasks to PEs in order of the queue.

This algorithm calculates two values for each task, the
Average Earliest Start Time (AEST) and the Average
Latest Start Time (ALST). We traverse down the DAG

(1) Traverse the DAG downward (starting at tentry), computing the AEST for each task.
(2) Traverse the DAG upward (starting at texit), computing the ALST for each task.
(3) Identify all critical nodes (where tentry = texit).
(4) Push the critical nodes on the stack (S) in descending order of their ALST.
(5) While S is not empty do

(a) If the task at the top of the stack S has a parent that is not in L then push the parent on S (so
that the parent is at the top of the stack).

(b) Else pop S and enqueue on L.

Fig. 8. Procedure used to generate the HRD list.

(1) A task (tmap) is de-queued from L
(2) Assign the task to the PE that results in the largest robustness value. Multiple PEs may have the same

robustness value.
(3) If ties occur then we select the PE with the best MCT.

– Multiple PEs may have the same robustness value.
(4) Repeat this process until all tasks are mapped.

Fig. 9. Procedure used to map tasks to machines for the HRD heuristic.

computing AEST (ti) for each task ti. Let pred(ti) be
the set of predecessor tasks for ti in the DAG, and
succ(ti) be the set of successor tasks. We can calculate
AEST (ti) as follows:

AEST (tentry) = 0,

fpred(ti, tj) = AEST (tj) + AET (tj)
+ ACT (dati,j),

AEST (ti) = max
tj∈pred(ti)

fpred(ti, tj).

We then traverse back up the DAG, computing
ALST(ti) for each task ti.

AEST (texit) = ALST (texit),
fsucc(ti, tj) = ALST (tj)−ACT (dati,j),
ALST (ti) = min

tj∈succ(ti)
fsucc(ti, tj)−AET (ti).

Tasks along the critical path (critical tasks) have ALST
equal to AEST. An example of this is shown in Figure
7.

In the listing phase, a prioritized queue L is built for
the mapping phase (procedure shown in Figure 8). In
addition, we reordered the listing phase of the HRD, to
queue critical tasks from the same application together,
to improve the overall performance because the resultant
mapping produces more efficient memory staging. The
next stage of the HRD uses L (L corresponds to a total
ordering of the DAG) to determine a mapping (proce-
dure shown in Figure 9). If two possible assignments
have the same robustness, then HRD uses an minimum
completion time criterion to select the best solution.

After the assignment, the heuristic will
duplicate the critical parent tcritical (tcritical =
argmax

tj∈pred(tcritical) fpred(tcritical, tj)) if the

time memory

time memory released

with 4 PEs

ti
m

e

PEk,1 PEk,2 PEk,3 PEk,4

time memory

released with 3

PEs

Fig. 10. Parallel example.

needed conditions are met. The time slot just prior
to the execution of a task is denoted as the duplicate
time slot (DTS). The DTS for each PE on the same
compute node (as the PE selected for assignment) is
the start time of tmap minus the time when the PE
finishes executing the task it has before tmap. If the
DTS is large enough to hold the execution of tcritical

then duplication occurs; thus, eliminating the need to
incur the communication cost of the tcritical’s data
set. A multiplicative factor (mult) is used to control
the conditions required for duplication. If the DTS
is larger than the result of multiplying mult and the
duration of the parent’s execution time, then the parent
can be duplicated in the DTS. Intuitively, this prevents
DTS from being too close in duration to the parent’s
execution time, which could increase the makespan
when the estimated task execution times are increased
by ρ. For this study, this best value was empirically

determined to be 1.4.
The reordering mostly eliminated the usefulness of

duplicating critical parents (that was used in a different
context in [10]), because the required SD and TD already
reside on the same compute node as the task.

1) Memory Management: A Least Recently Used
(LRU) algorithm is used to manage which data sets
remain in RAM and which are removed. Two excep-
tions to a basic LRU mechanism were used. The first
exception is a reference count, kept for each dataset,
determined by parsing the DAG. When a data set is no
longer going to be used, it is removed from memory. The
second exception is for data sets currently in memory
required by the next scheduled task; these data sets are
not removed.

2) Parallelizable Tasks: For the HRD, if a task is
parallelizable then the task parallelization that allows the
compute node’s memory to be released the earliest is
chosen. This is illustrated in Figure 10. In this example,
there are four PEs available on the compute node k,
but PEk,4 is available to start the execution of the
task later than the other PEs. Parallelizing across three
PEs releases the compute node’s memory earlier than
parallelizing across all four PEs.

3) Satellite Data Placement: Multiple scenarios are
considered for satellite placement. The first is a random
placement of the satellite data sets. The second is to
place the satellite data set on the same compute node as
the first task that requires it. Once the satellite data set
is placed on a compute node, all subsequent accesses
are from that compute node. The third algorithm places
the satellite data sets based on a reference count. A
list of SD sets is created with their associated reference
counts computed from the DAG, i.e., the number of tasks
that use that data set as a direct input. This list is then
sorted in descending order of these reference counts.
This variation will assign the same number of SD sets
to all HDs. We define SD per HD as the number of
SD sets per HD, i.e., SD per HD = # of data sets

HDs
.

The first SD per HD satellite data sets are allocated
to the HD with the largest read bandwidth, the next
SD per HD satellite data sets are allocated to the HD
with the second largest read bandwidth, and so forth.

IV. RELATED WORK

Research about scheduling DAGs on multi-processor
systems is extensive, e.g., [14], [15], [18], [21]. These
studies are motivated both by manufacturing and by
computational requirements. In this section, examples
of existing heuristics are presented.

The Modified Critical Path (MCP) algorithm devel-
oped in [21] was designed for homogeneous systems
and considers only one application DAG. The heuristic
determines the latest possible start time of each task

(constrained by the critical path length) and then creates
a list of tasks in increasing order of these times. Tasks
are selected for mapping in the order of the list. The
selected task is then mapped to the machine that allows
the earliest start time. Thus, the heuristic attempts to start
critical path tasks as early as feasible. There are several
differences between [21] and this study. We focus on
robustness against uncertainty in execution times, and
consider a heterogeneous computing environment.

The authors in [18] developed the Dynamic Level
Scheduling (DLS) heuristic. The static level of a task
is computed as an approximate time from the task
node to the exit node along the worst-case path on a
heterogeneous system. A data arrival time for a task
is defined as the time when all required input data
arrives for a task at a destination node. The dynamic
level is the static level minus the data arrival time. The
mappable task/machine pair with the highest dynamic
level value is selected for mapping. The performance
metric in [18] was makespan, and the paper did not
consider uncertainties or robustness. As indicated earlier,
minimizing makespan is not the same as maximizing our
robustness measure for DAGs.

The Dynamic Critical Path (DCP) heuristic developed
in [15] calculates the Absolute Earliest Start Times
(AbEST) and Absolute Latest Start Time (AbLST)
for each task. A task is defined to be on the critical
path if its AbEST equals its AbLST. At each mapping
event, mappable tasks update their AbEST and AbLST
to determine which task is on the critical path. The
critical path task is then mapped to a compute node that
minimizes the Earliest Start Time (EST) of the task and
the EST of its successor tasks. The DATCP heuristic
differs from the DCP heuristic in that the DCP heuristic
does not have to deal with uncertainty in task execution
times and its performance goal is makespan rather than
robustness.

The work in [17] considers a heterogeneous ad hoc

grid used to compute an application composed of com-
municating sub-tasks. Both this and our study consider
the mapping problem of DAGs in a heterogeneous
computing environment; the heuristics in [17] minimize
the average battery power consumed while meeting a
makespan constraint. This paper focuses on maximizing
the ability of a resource allocation to tolerate the uncer-
tainty of execution times, while the work in [17] does
not consider uncertainty. The minimization of battery
power consumed, as studied in [17], is different than
maximizing robustness presented in this study.

V. RESULTS

A. Simulation Setup

7.49 7.44

5.39

3.31 3.31

3

4

5

6

7

8

9

ro
b

u
s
tn

e
s
s
 (
)

2.58
2.25 2.23

0

1

2

3ro
b

u
s
tn

e
s
s
 (

Fig. 11. Results for DATCP 1, Max parallel with satellite mapping; DATCP 2, Max parallel with random satellite mapping; DATCP 3, no
parallelism with random satellite mapping; HRD 1, SD placement based on first task placement with duplication; HRD 2, SD placement based
on first task placement with no duplication; HRD 3, SD placement based on reference count with no duplication; HRD 4, random SD placement
with duplication; HRD 5, random SD placement and no duplication. The results are shown with a 95% confidence interval.

3

4

5

6

7

8

9

10

ro
b

u
s
tn

e
s
s
 (
)

HRD

DATCP

different robustness using

DATCP despite having

similar makespans

different robustness using

HRD despite having

similar makespans

0

1

2

3

0 5000 10000 15000

ro
b

u
s
tn

e
s
s
 (

makespan (s)

deadline

Fig. 12. Scatter plot of makespan vs. robustness for all versions the DATCP and HRD heuristics. Points in the plot represent the makespan
and robustness of resource allocations generated by the heuristics described in Figure 11 (all variations). These points represent different sets
of DAGs, ETCs, and communication times.

Each simulation run (50 total) has 64 unique appli-
cations, and each application is composed of 8 to 16
tasks chosen uniformly at random. For each task, the
fanout range is chosen uniformly between 1 to 3, and
a maximum of 3 incoming tasks and a maximum of 2
satellite data sets are allowed (number of satellite data
sets is also chosen randomly). After the fanout of half the

tasks in an application have been assigned, the remaining
tasks are set to a fanout of 1 (to force convergence of
DAG).

The size of the SD and TD sets used in this simulation
varies from 1 to 20 GBytes in size. We assume the
network bandwidth is 256 Mbytes per second, and that
the HC system is composed of eight compute nodes.

Compute nodes 1 and 2 have eight PEs, compute nodes
3 and 4 have four PEs, and finally compute nodes 5,
6, 7 and 8 have two PEs. All compute nodes have 160
GBytes of RAM (152 are used for staging data and the
remaining 8 are used to buffer data in and out of the
local HD). Half of the tasks in the applications are par-
allelizable, with half of those having “good” parallelism
and half having “poor” (see Table I). The ETC values of
a task are calculated by adding all the incoming data sets
(SD and TD in GBytes), and multiplying this sum by
an ETC per GByte value generated using the coefficient
of variation based method described in [2]. Consider
that all compute nodes are sorted in descending order
based on the number of PEs. If k is greater than j, then
the ETC of computing ti on compute node j is less
than or equal to its ETC on compute node k. Note that
even if two nodes have the same number of PEs, they
may still have different ETC values. A high-task/high-
compute-node heterogeneity [2] is used to simulate the
tasks within the DAGs. The heterogeneity values used
to generate the ETCs are Vtask = σtask

µtask
= 0.4 and

Vmachine = σmachine
µmachine

= 0.3, and the mean (µtask) is
1 second/Gbyte.

B. Simulation Results

As shown in Figure 11, the DATCP heuristics using
“max” parallelization performed better than the DATCP
variation with no parallelism. This improvement in per-
formance can be attributed to a better utilization of PEs.
Intuitively, if no additional tasks can be scheduled on
a compute node due to lack of memory (i.e., the local
RAM is full with data sets currently needed by the other
PEs), and there are idle PEs in that compute node then
the usage of parallel tasks will reduce task execution
time and release the memory earlier. The improvement
in performance when parallelizing tasks was on average
approximately 40%.

The variations DATCP 1 and HRD 1 that placed the
SD on the same node as the first task mapped to use it
were the best performing variations. For this simulation,
the HD speeds were faster than the network speed—
making data locality the primary influence.

Comparing the results of the DATCP 1 and HRD 1
(with parallelization and with satellite data placement)
to their counterparts without parallelization and using
random satellite placement, we can see both have about
a 40-50% improvement. The superior performance of
DACTP versus HRD may be attributed to assigning the
task to a PE within the node that has the most PEs
that give the same robustness value. This is because PEs
having equal robustness often implies that they are idle
and hence permit more parallelization.

A scatter plot of makespan and robustness is shown
in Figure 12. When makespan is equal to ∆ then ρ = 1.

Therefore, resource allocations with a makespan close to
∆ will have a ρ near to 1; because, as the makespan gets
closer to ∆ there is less opportunity for ρ to increase. It
is also evident that the HRD heuristic does not perform
as well as the DATCP heuristic. The selected points
in Figure 12 show resource allocations with similar
makespans but very different robustness values. The
robustness and makespan of the resource allocations in
Figure 12 show why makespan is not a good measure
of robustness.

VI. CONCLUSIONS

This study focused on using heuristics to do the
resource allocation of multiple applications (formed
by DAGs of tasks) to an HC environment based on
multicore chips. The goal of resource allocations is
to meet the deadline constraint while being robust
against uncertainty in execution times. We modeled a
heterogeneous computing system used for satellite image
processing, defined a mathematical robustness metric,
and created and evaluated resource allocation heuristics
that maximize this robustness metric. We were able to
derive a metric to measure the robustness, however, the
calculation of this metric was computationally intensive.

The DATCP heuristic produced the highest average
robustness values for the given simulation cases when
robustness was used to guide the heuristic. The use
of parallel tasks (both good and poor) improved the
robustness of the solution.

The method used to break ties had a significant
effect on the performance of the heuristics (selecting the
compute node with the most PEs with equal robustness
for the DATCP and the MCT value for the HRD). The
additional information used to break ties is dependent
on the fitness function used to evaluate solutions. In
this study, it was possible for multiple PEs to have the
same robustness. Because of this situation, a secondary
fitness function (to break ties) helps improve the overall
performance of a heuristic by providing additional in-
formation to differentiate between assignments with the
same robustness.

Acknowledgments: The authors thank Dalton Young for

his comments.

REFERENCES

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski, N. Beck,
L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, and B. Yao, “Characterizing resource allocation
heuristics for heterogeneous computing systems,” in Advances

in Computers Volume 63: Parallel, Distributed, and Pervasive

Computing, 2005, pp. 91–128.
[2] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali,

“Representing task and machine heterogeneities for heteroge-
neous computing systems,” Tamkang Journal of Science and

Engineering, Special 50th Anniversary Issue, vol. 3, no. 3, pp.
195–207, Nov. 2000.

[3] S. Ali, A. A. Maciejewski, and H. J. Siegel, “Perspectives on
robust resource allocation for heterogeneous parallel systems,”
in Handbook of Parallel Computing: Models, Algorithms, and

Applications, S. Rajasekaran and J. Reif, Eds. Boca Raton, FL:
Chapman & Hall/CRC Press, 2008, pp. 41–1–41–30.

[4] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measur-
ing the robustness of a resource allocation,” IEEE Transactions

on Parallel and Distributed Systems, vol. 15, no. 7, pp. 630–641,
Jul. 2004.

[5] H. Barada, S. M. Sait, and N. Baig, “Task matching and
scheduling in heterogeneous systems using simulated evolution,”
in 10th IEEE Heterogeneous Computing Workshop (HCW ’01),
Apr. 2001, pp. 875–882.

[6] E. G. Coffman, Computer and Job-Shop Scheduling Theory.
John Wiley and Sons, New York, NY, 1976.

[7] M. K. Dhodhi, I. Ahmad, and A. Yatama, “An integrated tech-
nique for task matching and scheduling onto distributed hetero-
geneous computing systems,” Journal of Parallel and Distributed

Computing, vol. 62, no. 9, pp. 1338–1361, Sep. 2002.
[8] D. Fernandez-Baca, “Allocating modules to processors in a

distributed system,” IEEE Transaction on Software Engineering,
vol. SE-15, no. 11, pp. 1427–1436, Nov. 1989.

[9] A. Ghafoor and J. Yang, “A distributed heterogeneous supercom-
puting management system,” IEEE Computer, vol. 26, no. 6, pp.
78–86, Jun. 1993.

[10] T. Hagras and J.Janecek, “A high performance, low complexity
algorithm for compile time job scheduling in homogeneous
computing environments,” in IEEE Proceedings of International

Conference on Parallel Processing Workshops (ICPP03), Oct.
2003, pp. 149–155.

[11] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” Journal of the

ACM, vol. 24, no. 2, pp. 280–289, Apr. 1977.
[12] M. Kafil and I. Ahmad, “Optimal task assignment in heteroge-

neous distributed computing systems,” IEEE Concurrency, vol. 6,
no. 3, pp. 42–51, Jul. 1998.

[13] A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang,
“Heterogeneous computing: Challenges and opportunities,” IEEE

Computer, vol. 26, no. 6, pp. 18–27, Jun. 1993.
[14] S. Kim, S. Lee, and J. Hahm, “Push-pull: Deterministic search-

based DAG scheduling for heterogeneous cluster systems,” IEEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 11,
pp. 1489–1502, Nov. 2007.

[15] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7,
no. 5, pp. 506–521, May 1996.

[16] V. Shestak, J. Smith, H. J. Siegel, and A. Maciejewski, “Stochas-
tic robustness metric and its use for static resource allocations,”
Journal of Parallel and Distributed Computing, vol. 68, no. 8,
pp. 1157–1173, Aug. 2008.

[17] S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam,
T. Banka, R. Castain, K. Chindam, S. Dussinger, P. Pichumani,
P. Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J. Sridharan,
and J. Velazco, “Static allocation of resources to communicating
subtasks in a heterogeneous ad hoc grid environment,” Journal of

Parallel and Distributed Computing, Special Issue on Algorithms

for Wireless and Ad-hoc Networks, vol. 66, no. 4, pp. 600–611,
Apr. 2006.

[18] G. Sih and E. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architec-
tures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 4, no. 2, pp. 175–187, Feb. 1993.

[19] H. Singh and A. Youssef, “Mapping and scheduling hetero-
geneous task graphs using genetic algorithms,” in 5th IEEE

Heterogeneous Computing Workshop (HCW 1996), Apr. 1996,
pp. 86–97.

[20] J. Smith, V. Shestak, H. J. Siegel, S. Price, L. Teklits, and
P. Sugavanam, “Robust resource allocation in a cluster based
imaging system,” Parallel Computing, vol. 35, no. 7, pp. 389–
400, Jul. 2009.

[21] M. Wu and D. Gajski, “Hypertool: A programming aid for
message-passing systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 1, no. 3, pp. 330–343, Jul. 1990.
[22] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and contention-

aware multi-resource reservation,” Cluster Computing, vol. 4,
no. 2, pp. 95–107, Apr. 2001.

BIOGRAPHIES

Luis Diego Briceño is currently pursuing his Ph.D.
degree in Electrical and Computer Engineering at Col-
orado State University. He obtained his B.S. degree in
electrical and electronic engineering from the University
of Costa Rica. His research interests include heteroge-
neous parallel and distributed computing.

Jay Smith received the B.A. in Mathematics from the
University of Colorado at Boulder and the Ph.D. degree
in Electrical and Computer Engineering in 2008 from
Colorado State University. Jay is currently a Software
Architect with DigitalGlobe and an Assistant Research
Professor in the Electrical and Computer Engineering
Department at Colorado State University. His research
interests include heterogeneous parallel and distributed
computing, robust resource management, and parallel
algorithms. In the area of heterogeneous computing,
he is investigating stochastic techniques for resource
management, techniques for decentralized resource man-
agement, and the design and structure of large-scale
distributed heterogeneous computing systems. He is a
member of both the IEEE and ACM.

Howard Jay Siegel was appointed the Abell Endowed
Chair Distinguished Professor of Electrical and Com-
puter Engineering at Colorado State University (CSU) in
2001, where he is also a Professor of Computer Science.
He is the Director of the CSU Information Science and
Technology Center (ISTeC), a university-wide organiza-
tion for promoting, facilitating, and enhancing CSU’s
research, education, and outreach activities pertaining
to the design and innovative application of computer,
communication, and information systems. From 1976 to
2001, he was a professor at Purdue University. Prof.
Siegel is a Fellow of the IEEE and a Fellow of the ACM.
He received a B.S. degree in electrical engineering and
a B.S. degree in management from the Massachusetts
Institute of Technology (MIT), and the M.A., M.S.E.,
and Ph.D. degrees from the Department of Electrical
Engineering and Computer Science at Princeton Uni-
versity. He has co-authored over 370 technical papers.
His research interests include robust computing systems,
resource allocation in computing systems, heterogeneous
parallel and distributed computing and communications,
parallel algorithms, and parallel machine interconnection
networks. He was a Coeditor-in-Chief of the Journal

of Parallel and Distributed Computing, and was on

the Editorial Boards of both the IEEE Transactions

on Parallel and Distributed Systems and the IEEE

Transactions on Computers. He was Program Chair/Co-
Chair of three major international conferences, General
Chair/Co-Chair of seven international conferences, and
Chair/Co-Chair of five workshops. He is a member of
the Eta Kappa Nu electrical engineering honor society,
the Sigma Xi science honor society, and the Upsilon Pi
Epsilon computing sciences honor society. He has been
an international keynote speaker and tutorial lecturer,
and has consulted for industry and government. For more
information, please see www.engr.colostate.edu/∼hj.

Anthony A. Maciejewski received the B.S., M.S., and
Ph.D. degrees in Electrical Engineering in 1982, 1984,
and 1987, respectively, all from The Ohio State Univer-
sity. From 1988 to 2001, he was a Professor of Electrical
and Computer Engineering at Purdue University. In
2001, he joined Colorado State University where he is
currently the Head of the Department of Electrical and
Computer Engineering. He is a Fellow of IEEE. A com-
plete vita is available at www.engr.colostate.edu/∼aam.

Paul Maxwell is an active duty Army Lieutenant
Colonel and a Ph.D. candidate in the Electrical and
Computer Engineering department at Colorado State
University. He received a B.S. degree in electrical en-
gineering from the United States Military Academy in
1992. He received a M.S. degree in electrical engineer-
ing from the University of Kentucky in 2001. From 1992
until the present, he has served in various military po-
sitions to include platoon leader, company commander,
brigade plans officer, brigade logistics officer, battalion
operations officer, and battalion executive officer. He
was also an Assistant Professor in the department of
Electrical Engineering and Computer Science at the
United States Military Academy from 2001 until 2004.
During his time in service, he has deployed to the
Former Yugoslavia Republic of Macedonia, the Republic
of Bosnia-Herzegovina, and Iraq.

Russell Irvin Wakefield has been a Ph.D. candidate in
the Computer Science department at Colorado State Uni-
versity since 2006. His research areas include distributed
systems, security in operating systems, and access con-
trol models. He received his B.S degree in Computer
Science from Colorado State University in 1980 and
achieved over 25 years of industry experience in high
performance computing and symmetric multi-processing
systems programming at corporations including Control
Data Corporation, ETA Systems, Pyramid Technology,
and Evans & Sutherland. After 7 years as Director of En-
gineering at Cisco Systems, he returned to academia to

teach and complete his Ph.D. He has been an instructor
in the Computer Science department at Colorado State
University since 2007. For more information, please see
www.cs.colostate.edu/∼waker.

Abdulla Al-Qawasmeh received his B.S. in Computer
Information Systems from the Jordan University of
Science and Technology in 2005. He received his M.S.
in Computer Science from the University of Houston
Clear Lake in 2008. Since August, 2008 he has been a
Ph.D. student in Computer Engineering and a Graduate
Research Assistant at Colorado State University. His
research interests include robust heterogeneous comput-
ing systems and resource management in heterogeneous
computing systems.

Ron C. Chiang is a Ph.D. student in the Department
of Electrical and Computer Engineering at Colorado
State University. He received the B.S. degree from
the Department of Computer Science and Information
Engineering at Tamkang University, and the M.S. degree
from the Department of Computer Science and Informa-
tion Engineering at National Chung Cheng University.
His research interest is heterogeneous computing. He is
a student member of the ACM and the IEEE Computer
Society.

Jiayin Li received the B.E. and M.E. degrees from
Huazhong University of Science and Technology, China,
in 2002 and 2006, respectively. And now he is pur-
suing his Ph.D. degree in Department of Electrical
and Computer Engineering, University of Kentucky. His
research interests include software/hardware co-design
for embedded system and high performance computing.

