
A Demonstration of a Simulation Tool for Planning
Robust Military Village Searches

Paul Maxwell1,3, Ryan Friese1,2, Anthony A. Maciejewski1, Howard Jay Siegel1,2,

Jerry Potter1, Jay Smith1,4

1Electrical and Computer Engineering Department
2Computer Science Department

Colorado State University, Fort Collins, CO 80523-1373 USA
3United States Army

4DigitalGlobe, Inc., Longmont, CO 80503

Keywords: robustness, village search, resource allocation,
simulation

Abstract
 In the current military environment, village searches are
conducted daily by a variety of search team types. Staff
officers planning these resource allocation problems
currently rely on experience and simple data tables to
develop the plans. The Robust People, Animals, and Robots
Search (RoPARS) planning tool for village searches
developed at Colorado State University can assist military
planners with this tedious process. The tool consists of a
graphical user interface and a resource allocation engine. Its
output is a mission plan that is robust against uncertainty in
the battlefield environment (e.g., unit speed, temperature,
enemy contact). The contributions of this paper include the
RoPARS tool and its robustness concepts, mathematical
models, and resource allocation heuristics.

1. INTRODUCTION

Technology Center, ISTeC (ISTeC.ColoState.edu), is
organizing the PAR (People-Animals-Robots) multi-
disciplinary research laboratory [8] to study how teams of
people, animals, and robots can be used together in new,
synergistic ways in a variety of environments, including
health care, search and rescue, and military operations. This
effort is part of that PAR Lab.
 In the modern, fast-paced, high technology military,
making decisions on how to best utilize resources to
accomplish a mission with a set of specified constraints is
difficult . A Cordon and Search of a village (i.e., village
search) is an example of such a mission. Leaders must plan
the mission, assigning assets (e.g., soldiers, robots,
unmanned aerial vehicles, military working dogs) to
accomplish the given task in accordance with orders from

 This research was supported by the National Science Foundation under
grant number CNS-0905399, and by the Colorado State University George
T. Abell Endowment

higher headquarters. Computer tools can assist these leaders
in making decisions, and do so in a manner that will ensure
the chosen solution is within mission constraints and is
robust against uncertainty in environmental parameters.
Currently, no such tools exist at the tactical or operational
level to assist decision makers in their planning process and,
as a result, individual experience is the only tool available.
This paper introduces the Robust People, Animals, and
Robots Search (RoPARS) planning tool for village searches
that coordinates soldiers, military working dogs, and robots.
The contributions of this paper include the RoPARS tool
and its robustness concepts, mathematical models, and
resource allocation heuristics. The result is a decision-
making aid for military leaders to use during the mission
planning phase of an operation.
 The state of the art for village search planning is limited
to individual experience and basic data tables from military
Field Manuals ([10], [9]). The result is dramatic variation in
the quality of a plan, its ability to account for uncertainty,
and the resulting confidence in its success. The RoPARS
simulation tool improves mission planning by incorporating:
(1) mathematical models that represent people, animals, and
robots (PAR) and account for uncertainty in the
environment; (2) robustness metrics that assist decision
makers in managing complex processes with a high degree
of certainty regarding tactical mission completion; and (3)
heuristics based on those models and metrics that result in
near-optimal resource allocations (i.e., completing a village
search by its deadline with maximum probability). The
output of the tool is a recommended resource allocation for
the village search mission that is expected to meet the
provided constraints in a timely manner and reduce the risk
for those involved in the mission.
 The RoPARS tool automates many functions of the
planning process thus freeing planners for other tasks.
Through a graphical user interface (GUI), the tool imports
Environmental Systems Research Institute (ERSI) standard
shapefiles of the search area (many of which are currently
available in the Urban Tactical Planner library), accepts user
inputs regarding the plan (e.g., phase lines, boundary lines,

mailto:paul.maxwell@us.army.mil?subject=HSC10%20Paper

search team types and compositions, target buildings),
creates a resource allocation using static allocation
heuristics (e.g., Minimum search heuristic, genetic
algorithm), evaluates the performance of the allocation
using quantifiable measures, and graphically displays at a
user-selected rate the resulting plan. This automated
mission analysis tool uses stochastic information, is faster
than human generated solutions, and is more reliable in
terms of the robustness of its results than existing methods.
Inevitably this will contribute to better, more informed
decisions for military commanders in combat operations in
the contemporary operating environment.
 The remainder of the paper is organized as follows.
The village search problem background is introduced in
Section 2. Section 3 reviews related work in the fields of
robustness and resource allocation. A description of the
RoPARS tool is in Section 4. In Section 5, the simulation
set-up is described and results are presented. Finally, we
present our conclusions in Section 6.

2. BACKGROUND
In a military village search problem, there are one or

more target buildings that require searching. The units that
conduct the search can consist of numerous different forces
with the primary ones being human teams of soldiers,
human teams augmented with military working dogs, and
human teams augmented with search robots. At the basic
level, the problem is a resource allocation problem where
search resources (teams) must be assigned to target
buildings. This resource allocation problem in itself is
computationally complex. Often this problem is made more
difficult by the introduction of constraints on the solution.
These constraints take the form of boundary lines (lines that
demarcate allowable search areas for teams), phase lines
(ground reference lines that act as synchronization barriers
controlling the forward movement of the search teams), and
directions of advance (limits search direction). An example
village search problem is shown in Figure 1.

The operating environment for these searches contains
numerous uncertainties that render exact solutions
impractical. These uncertainties include but are not limited
to factors such as varying search times, encounters with the
enemy, weather impacts on the search, and mechanical
malfunctions. A resource allocation based on expected
values will frequently not produce the best solution when
these uncertainties are incorporated. It is therefore our goal
to develop a near optimal resource allocation for the village
search problem that is robust against these uncertainties.

3. RELATED WORK
At a high level of abstraction, the village search

problem is similar to the multiple traveling salesmen
problem (mTSP). Like the mTSP, each target building
(city) must be visited once by only one search resource
(salesman). To complete the comparison, the salesmen start
and end at the same location. The main difference between
the village search problem and mTSP is that the village
search problem incorporates time spent searching at the
nodes into the problem statement whereas the mTSP domain
generally does not include time spent in the visited cities.

There has been extensive research into solutions for the
TSP ([6], [11]) and mTSP problem [3] due to their wide
applicability and complexity. Here we review only works
that use genetic algorithms to find a solution.

The work in [14] models a steel rolling factory as an
mTSP problem and uses a genetic algorithm to produce
solutions. Similar to the village search problem, the steel
rolling problem has constraints that reduce the number of
valid solutions. The steel rolling problem considers time at
a node instead of distance between nodes. Unlike our work
though, their genetic algorithm uses discrete values instead
of stochastic information and is not concerned with the
robustness of the solution.

In [12], a genetic algorithm is used to produce solutions
for a global satellite survey network problem. This problem
domain was transformed into an mTSP problem where the
salesmen are satellites and the cities are survey jobs for the
satellites. The objective of the research is to find a minimal
cost route between survey points using a cost matrix to
define the edge cost. In this domain, the problem is
restricted to deterministic values and is not concerned with
robustness. Additionally, the problem does not have
limiting constraints on the solution such as the boundary
lines of the village search problem.

 The work in [16] transforms a multiple robot mine
clearing problem into an mTSP problem. In this research,
multiple robots must move to multiple mines and remove
those mines in a cooperative manner. The authors use a
genetic algorithm to find a solution that minimizes the paths
the robots traverse while removing all the mines. As with
the other works surveyed, this work uses deterministic
values and does not consider uncertainty in its calculations.

Figure 1. Example village search mission with eight target
buildings (Tj), a unit boundary, a restrictive phase
line, and a direction of advance.

Additionally, the mine removal time (equivalent to the
search time of target buildings) is not considered in the
problem.

There is much TSP and mTSP research to provide near
optimal solutions to a particular domain. The solution
techniques vary in heuristic style and in choices like
sequential versus parallel execution of the heuristics but
none of the works surveyed address robustness.

4. RoPARS TOOL

4.1. ROBUSTNESS AND VILLAGE SEARCH

Solutions to problems are often highly valued if they
are robust. In the village search domain, military leaders
desire a solution to the problem that is able to withstand the
effects of uncertainty. This is evidenced by the common

goes out the window as soon as
A robust mission plan that

can survive the effects of the unknown is valuable.
However, the definition of the term robustness is
frequently unclear.

The three robustness questions that help define
robustness for a system are [2]: (1) What behavior of the
system makes it robust? (2) What uncertainties is the system
robust against? and (3) Quantitatively, exactly how robust is
the system?

In the search of a village such as shown in Figure 1, the
robustness questions can be answered differently depending
on the performance objective in question. To illustrate the
application of the questions to this domain, we will define
the system to be robust if all the search resources (SRs)
complete their building searches prior to the mission
deadline time (MDT). This is a time constraint by which all
teams must complete. The uncertainties against which the
system is robust are variability in the ideal search rates of
the search resources and variability in the ideal movement
rates of the search resources. The uncertainties the
RoPARS tool models are not limited to these choices. Any
uncertainty that can be modeled may be incorporated into
the robustness metric. To answer the third robustness
question, we use the FePIA method.

The FePIA (Features, Perturbation parameters, Impact,
Analysis) method [1] is a framework for measuring
robustness. Using the FePIA method, the following are
identified: (1) the performance features that determine if the
system is robust, (2) the perturbation parameters that
characterize the uncertainty, (3) the impact of the
perturbation parameters on the performance features, and
(4) the analysis to quantify the robustness. As these steps
are followed, the robustness metric for a system is created
(other examples of robust resource allocations can be found
in [8] and [13]).

First, we define the search resource completion time for
team i (RCTi) to be the performance feature for this system.

If there are m search resources, then there are m
performance features. The perturbation parameters for step
2 are the same uncertainties outlined in the previous
paragraph. The impact of the perturbation parameters on
the performance feature is that they will either increase or
decrease the value of RCTi. For example, search resource i
may have an estimated search rate of 0.65 m2/s based on
user input. However, the true search rate may less than that
due to an unanticipated problem such as the illness of a
search team member. Thus, it will take longer to search
buildings and the value of RCTi will increase.

The analysis to quantify the robustness of the system is
complex and the reader is referred to [7] for a more detailed
discussion. To summarize, the time to search a given
building is a complicated function of factors that include the
building characteristics, search team characteristics, and
probability mass functions (pmfs) of the relevant
uncertainties. This results in a pmf that represents the
building search time. To calculate RCTi it is necessary to
convolve (assuming independence) the building search time
pmfs for the buildings assigned to that team and the
associated road segment traversal pmfs resulting in the

mf.
 It is assumed that the search resources have adequate
supporting elements to operate independently and therefore
the search resource completion times are independent within
a phase line area. If there are no phase lines constraining the
search, the stochastic robustness metric, SRM, of [7] is
defined as the product of the all the teams probabilities of
completing before the MDT. That is, the SRM is the
probability that all resources (teams) will complete by the
MDT. If phase lines exist, then the maximum of the search

pmfs for the phase line area is calculated. The
resulting pmf is used as the initial value pmf for each search
resource RCT in the next phase line area. Then the SRM is
calculated using the RCT values of the last phase line area.

4.2. ENVIRONMENT
The village search mission environment is defined by

its boundary lines and the assignment (grouping) of search
resources to specific boundary line areas. Assuming that at
least one boundary line is present, a village search problem
solution space has many combinations of the number of
search resources to boundary line area assignments to
explore. For example, if there are five search resources and
two boundary line areas, then there exist four valid grouping
possibilities (one SR on the east side, four SRs on the west
side (1,4), two SRs on the east side, three SRs on the west
side (2,3), etc.). If more boundary lines exist (i.e., two
boundary lines) and five SRs are used then a grouping tuple
may be (2,2,1).
4.3. MINIMUM SEARCH HEURISTIC

The minimum search heuristic was inspired by the
original two-phase greedy heuristic in [5]. It is modified to

fit the village search domain and its constraints. It is a fast,
deterministic heuristic and thus can provide valid solutions
in a time constrained environment.
 The minimum search heuristic is used to find a solution
for one specific grouping tuple. The heuristic is
deterministic and will assign the same starting building
locations for each execution if unguided. To expand the
search area and improve the solution, the heuristic was
modified to randomly select starting building locations for
each search resource. This forces the heuristic to explore
other solutions. The pseudocode for the minimum search
heuristic is shown in Figure 2.

Figure 2. Minimum search heuristic pseudocode.

4.4. VILLAGE SEARCH GENETIC ALGORITHM
The minimum search heuristic provides valid

solutions but in general does not provide good quality
solutions due to its limited exploration of the search space.
The village search genetic algorithm (VSGA) compensates
for this weakness by exploring the space more broadly.

The VSGA is a modification of a classic evolutionary
genetic algorithm. Its pseudocode is shown in Figure 3.
The VSGA uses the minimum search heuristic solution as a
seed chromosome. The other chromosomes in the
population are generated randomly (ensuring valid
chromosomes). During chromosome generation, a look-up
table is created that cross-references SR index values to SR
absolute reference values (Figure 4a). The reason for this
table will be discussed later. The VSGA uses stochastic
universal sampling for the selection of the next population.
In this technique, selection bias with regard to the expected
reproduction rate is avoided and the next population is

virtual roulette wheel [4]. In
each generation, chromosomes are subjected (using a
chosen probability) to crossover and mutation operators.
Then each chromosome in the population is evaluated using
the stochastic robustness metric as the fitness function. The
details of the chromosome operators and the fitness function
are described in subsequent paragraphs.

At its most basic level, a chromosome for the VSGA
consists of . An example strand is shown
in Figure 4b. The strand is an array composed of target
building number/search resource index pairs. The strand
represents target buildings, their assigned search resources,
and the scheduling order of the target buildings. The
building number/SR index
defines a global ordering with pairs in the leftmost array
position being first in time.
determined by the number of target buildings within its
boundary line and phase line area. The VSGA uses strands
due to the constraints placed on the solution by the problem
domain such as boundary lines that limit crossover and
mutation changes.

Figure 3. Village search genetic algorithm pseudocode.

(a)

(b)

Figure 4. Village search genetic algorithm chromosome
components: (a) search resource look-up table,
and (b) chromosome

 At the next higher level, the VSGA chromosome
consists of one or more strands. The number of strands in a
chromosome is determined by the number of phase line
areas multiplied by the number of boundary areas. In Figure
5, an example chromosome is shown with its four
component strands for a two phase line area by two
boundary line area village search.
fitness is evaluated, the strands are assembled as a whole
into the chromosome and then the SRM is calculated.
 The crossover operators in the VSGA are the
scheduling and the matching crossovers. The operators
function using two randomly selected parent chromosomes

from the population and they produce two child
chromosomes. In a particular generation, the number of
crossover operations is less than or equal to half the number
of population chromosomes. Examples for these operators
are shown in Figures 6 and 7. Similar to classic genetic
algorithms, the crossover operators use two parent
chromosomes in their operation. Additionally, the
crossover operators function on the same strand within each
parent chromosome. For example, a crossover operation
could be performed on strand 0,0 (Figure 5) on both parent
chromosome A and parent chromosome B. Crossover (and
mutation) operations can be performed on more than one of
the strands in a chromosome if desired. However, in this
work, only one randomly selected strand per chromosome
pair is operated upon in a given generation.

Figure 5. Village search genetic algorithm chromosome.

Figure 6. Village search genetic algorithm scheduling

crossover example.

 The scheduling crossover operation operates as follows.
A single crossover point is randomly chosen and then the
sub-strand to perform the crossover upon is randomly
chosen. Unlike crossover operators described in [15] that
function on the ,
the VSGA crossover operator chooses the
sub-strand of the strand for crossover. Next, the scheduling
order of the target buildings in the selected sub-strand of
parent chromosome A are re-ordered to match the

scheduling order of parent chromosome B. The operation is
performed sed.

Figure 7. Village search genetic algorithm matching

crossover example.

 The matching crossover operates similarly to the
scheduling operator. A single crossover point is randomly
chosen and then a sub-strand is randomly chosen. Each
target building within the chosen sub-strand of parent A is
assigned the search resource it has in parent B. The
operation is then repeated with the parent chromosomes
reversed (see Figure 7).
 Similar to the crossover operators, the mutation
operators function on a strand within a chromosome. Again,
the operators can be performed on more than one strand but
as with the crossover operators it has been limited to one
strand for the example in this paper. Examples for the
scheduling and matching mutation operators are shown in
Figures 8 and 9.

Figure 8. Village search genetic algorithm scheduling

mutation example.

Figure 9. Village search genetic algorithm matching

mutation example.

The scheduling mutation operator begins by randomly
selecting a target building/search resource pair to
reschedule. Next, it randomly selects a new order position
in the strand. It then inserts the target building/search
resource pair at the newly selected destination creating a
new scheduling order for that strand.
 The matching mutation operator begins by randomly
selecting a target building/search resource pair to mutate.
The operator then randomly selects a new search resource
from the set of search resources operating within the given
boundary line area. The selected search resource is then
assigned to the target building creating a new matching.
 All of the operators described in the preceding
paragraphs operate in each generation. For each operator, a
user selected probability is used (i.e., probability of
crossover, probability of mutation) to randomly apply the
operator on the selected chromosomes. As with all genetic
algorithms, an optimal solution is not guaranteed.
Additionally, its convergence rate and quality of solution is
dependent upon implementation factors (e.g., population
size, number of generations created, probability of
crossover/mutation).

As mentioned previously, through use of a look-up
table (Figure 4a), the SR indices are associated with absolute
SR identification numbers. Chromosome SR look-up tables
are inherited from parent to child during crossover and
mutation operations. We use index tables so that we can
search multiple combinations of search resources in a
grouping without generating invalid chromosomes during
crossover operations. An example of how invalid
chromosomes could occur follows. In parent chromosome
A, absolute search resources 1 and 4 are on the
side of a boundary line while resources 0 and 3 are on the

 (in group notation - <1,4|0,3>). In parent
chromosome B, absolute search resources 0 and 3 are on the

1 and 4 are on
the (<0,3|1,4>). A matching crossover
operation could attempt to assign search resource 3 to the

 a child chromosome of parent A and B that

(resulting in a group <1,3|0,3>). Because a search resource
can only search on one side of a boundary line, this is an
illegal chromosome. With our index representation, both
search resource 4 and 3 can be represented in the strand as
SR Index 1 (group notation - <0,1|0,1>). They can then
conduct crossover operations without generating invalid
chromosomes. In this example, when the child chromosome
A is assigned SR Index 1 during matching crossover, the
valid absolute search resource number 3 is maintained from
parent A and a valid chromosome is the result (<1,4|0,3>).
Additionally, the generic representation allows us to explore
the search area for a given resource assignment grouping
(e.g., (3,2)) with less machine time than searching each
resource assignment ordering individually.

4.5. GUI DESCRIPTION
 The RoPARS GUI preprocesses the data and allows a
user to visualize the layout of a specific village and
manipulate search resources and constraints. The GUI
allows the search area to be specified without tedious user
action. The GUI handles the creation of village data files to
be processed by the RoPARS resource allocation engine.
After an allocation is created by the RoPARS tool, a user
can review the plan by viewing an animation that shows the
search plan being conducted at a user selected speed.
 The GUI represents a village by reading in a pair of
Environmental Systems Research Institute (ESRI) standard
shapefiles. One shapefile contains information on the

shapefiles, many important pieces of data are derived. Aside
from allowing the village to be graphically represented, they
also allow the GUI preprocessor to calculate a building s
center of mass and approximate area, as well as

the lengths of the roads.
 After the shapefiles have been input, the GUI allows the
user to perform many actions that will define the village
search plan. A user can draw boundary and phase lines on
the village , thus separating the village into
distinct sections. The GUI assigns each section a color
allowing the user to identify the buildings and roads in that
section. A user can also select which buildings they need to
search. The GUI uses color to show which buildings will be
searched and which buildings will not be searched. The final
action a user can perform is selecting search teams for the
village. The user can select from three types of teams:
human, military working dog, and robot. As well as being
able to select the type of team, the user can edit certain
aspects the team such as average search and movement
rates. Figure 10 shows a model village with a boundary line,
a phase line, and thirty target buildings.
 After all the constraints for the search plan have been
input, the GUI creates three data files and sends this
information to the RoPARS resource allocation engine.
These files include a road network adjacency file, a building
data file, and a search resource data file. The road network
adjacency file contains connection and length data for all the
road segments in the village. A road segment is demarcated
by two nodes. Nodes occur where a road changes direction,
at road intersections, at the closest point to a target building,
and every 200 meters if no other break has occurred. Every
time a change is made to the village, (e.g., a new building is
selected, a phase/boundary line is added) the nodes are
updated. The building data file contains: information about
target building locations, the road segment node connected
to the buildings, and the target buildings area. The search
resource data file contains: information about the types of
search resources in the village, search resource movement
rates, and search resource search rates.

Figure 10. RoPARS tool GUI screen capture of an example village search scenario with a boundary line (green), a phase line

(red), thirty target buildings (blue), and search resource input dialog box.

Figure 11. RoPARS tool GUI screen capture of an example resource allocation in playback mode with five search resources

and their associated colored movement paths (brown, blue, purple, green, orange).

 After the RoPARS resource allocation engine creates
the resource allocation, a file containing the search plan is
created and interpreted by the GUI. This file contains
information on the specific routes individual teams will
travel, the target buildings they will search, and the timing
data for each team. This information allows the GUI to
display an animation of the search plan (Figure 11). This
animation is played at a user selected rate.

5. SIMULATION RESULTS
The results discussed here are based upon a test village

search scenario using five search resources (four human
teams, one military working dog team), 24 target buildings,
and 64 road segment nodes. A realistic mission deadline
time was chosen of 1.5 hours. Mission constraints included
one phase line and one boundary line. Additionally, the SR
grouping was three search resources on the

side (3,2). To find the optimal solution, all possible
combinations of boundary assignments should be explored.
However, in this paper, only one grouping was tested as a
proof of concept.

The simulation results are based on 50 trials. In each of
the trials, the search resource movement rates and search
rates differ from one trial to the next. The charts shown
here display the data collected from these 50 trials.

The
Colonel Maxwell who has 18 years experience in the Army
and has planned and executed village search missions. The
expert solution was created by hand using only the tools
currently available to military planners.

The minimum search heuristic results are shown using
50 sets of random building starting location assignments per
trial. Experiments were done with different numbers of
random building starting locations ranging from 1 to 50.
There was a 1.5% improvement in the SRM between one
random starting location and 50 random starting locations;
however, there was only a 0.08% improvement between 20
random starting locations and 50 random starting locations.
Thus, increasing the number of random building starting
locations does not guarantee a proportional improvement in
the quality of the solution.

Experiments were conducted using population sizes of
20, 50, and 100 chromosomes. In each experiment, the
chromosomes were drawn from a file of 100 randomly
generated chromosomes such that the 50 chromosomes were
a subset of those in the size 100 population and the 20 were
a subset of those in the size 50 population. For these
experiments, the probability of crossover was set to 0.8 and
the probability of mutation was set to 0.1. Additionally, the
stopping conditions for the genetic algorithm were set to
1000 total generations or 200 generations with no change in
the best solution. Elitism was used thus ensuring the best
solution was kept in the population across generations.

 On average, the quality of the solutions produced by the
VSGA was better than the other approaches. The trial
average of the VSGA was 1.75% better than the expert
average and 3.92% better than the minimum search average.
For larger village search scenarios, the length of time to
calculate an expert solution will increase and its quality will
probably decrease. This makes using even a simple
heuristic like minimum search valuable. Additionally, it is
hypothesized that the quality of the minimum search and
VSGA will improve relative to the expert solution as the
problem size increases.
 The results are shown in Figure 12. The expert solution
performed better than the minimum search allocation
primarily due to the human ability to choose initial starting
locations that ensure routes to subsequent target buildings
are not too long. The minimum search heuristic is a greedy
heuristic and does not account for the long term impact of
its choices. This results in allocations that are relatively
non-robust. The reader is also reminded that the quality of
the expert solution will vary greatly depending on the
experience and expertise of the planner.

Figure 12. Stochastic r minimum

search, and VSGA allocations for 50 trials.

As previously mentioned, experiments were conducted
with varying population sizes for the VSGA in order to
study the population size versus execution time tradeoff
(Figure 13). It is clear that some improvement is gained
between population size 20 and 50 (an average of 0.56%).
However, there is no improvement between population sizes
of 50 and 100. It is clear though that the average of three
extra hours to complete the VSGA for 100 chromosomes
compared to 50 chromosomes is not beneficial.

6. CONCLUSIONS
Determining resource allocations for military village

search problems is a complex problem. Current solutions
produced by planning officers are time consuming and of
unquantifiable quality. We have presented the RoPARS
tool for village search planning and two heuristics for use in
its resource allocation engine. The heuristics demonstrate

that computer tools can create solutions for these problems
and do so in a manner that is robust against uncertainty in
the environment. This can save military planners time and
resources during the planning process and improve the
quality of the resulting plan.

Future work in this area includes increasing the size of
the test scenarios in terms of target buildings and number of
search teams. Additionally, experiments can be done on the
village search genetic algorithm to determine the best
number of strands to perform crossover and mutation upon
per generation. Finally, additional research is needed to
develop heuristics that can quickly and dynamically re-
evaluate the resource allocation plan should conditions
change from those used during static resource allocation.

Figure 13. Village search genetic algorithm stochastic

robustness for varying population sizes.

Acknowledgements. The authors would like to thank L.
Briceño, Greg Pfister, and A. Al-
comments, and D. Young for use of his max. pmf code.

References
[1] S. Ali, A. A. Maciejewski, H. J. Siegel, and J. Kim,

Measuring the robustness of a resource allocation
IEEE Trans. on Parallel and Distributed Systems, Vol.
15, No. 7, July 2004, pp. 630 641.

[2] S. Ali, A. A. Maciejewski, and H. J. Siegel,
Perspectives on robust resource allocation for

heterogeneous parallel systems Handbook of
Parallel Computing: Models, Algorithms, and
Applications, S. Rajasekaran and J. Reif, eds., Chapman
& Hall/CRC Press, Boca Raton, FL, 2008, pp. 41-1 41-
30.

[3] T. Bektas, The multiple traveling salesman problem:
An overview of formulations and solution procedures,
Omega: The International J. of Management Science,
Vol. 34, 2006, pp. 209 219.

[4] T. Blickle and L. Thiele, A comparison of selection
schemes used in genetic algorithms, Technical Report
TIK-Report No. 11, Ver. 2, CEN Lab, Swiss Federal
Institute of Technology, Dec. 1995, 67 pp.

[5] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on non-identical
processors, J. of the ACM, Apr. 1977, Vol. 24, No. 2,
pp. 280 289.

[6] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza,
and S. Dizdarevic, Genetic algorithms for the
travelling salesman problem: A review of
representations and operators, Artificial Intelligence
Review, Vol. 13, No. 2, 1999, pp. 129 170.

[7] P. Maxwell, A. A. Maciejewski, H. J. Siegel, J. Potter,
A mathematical model of robust military

village searches for decision making purposes 2009
Int l Conf. on Information and Knowledge Engineering,
July 2009, pp. 311 316.

[8] P. Maxwell, H. J. Siegel, J. Potter, and A. A.
-Animals-Robots

laboratory: Robust resource a 2009 IEEE
Int l Workshop on Safety, Security, and Rescue
Robotics, Nov. 2009.

[9] FM 3-31.1 Army and Marine Corps Integration in Joint
Operations, U. S. Army Training and Doctrine
Command, Ft. Monroe, VA, Nov. 2001.

[10] FM 34-8-2 , U.S.
Army Training and Doctrine Command, Ft. Monroe,
VA, May 1998.

[11] J. Potvin, Genetic algorithms for the traveling
salesman problem, Annals of Operations Research,
Vol. 63, 1996, pp. 339 370.

[12] H. Saleh and R. Chelouah, The design of the global
navigation satellite system surveying networks using
genetic algorithms, Engineering Applications of
Artificial Intelligence, Vol. 17, 2004, pp. 111 122.

[13] V. Shestak, J. Smith, A. A. Maciejewski, and H. J.
robustness metric and its use for

static resource a J. of Parallel and
Distributed Computing, Vol. 68, No. 8, Aug. 2008, pp.
1157 1173.

 [14] L. Tang, J. Liu, A. Rong, and Z. Yang, A multiple
traveling salesman problem model for hot rolling
scheduling in Shanghai Baoshan Iron & Steel
Complex, European J. of Operations Research, Vol.
124, 2000, pp. 267 282.

[15] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
matching and scheduling in

heterogeneous computing environments using a
genetic-algorithm-based a J. of Parallel and
Distributed Computing, Vol. 47, No. 1, Nov. 1997, pp.
8 22.

[16] Z. Yu, L. Jinhai, G. Gouchang, Z. Rubo, and Y.
Haiyan, An implementation of evolutionary
computation for path planning of cooperative mobile
robots, 4th World Congress on Intelligent Control and
Automation, June 2002, pp. 1798 1802.

