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Abstract 
 In the current military environment, village searches are 
conducted daily by a variety of search team types.  Staff 
officers planning these resource allocation problems 
currently rely on experience and simple data tables to 
develop the plans.  The Robust People, Animals, and Robots 
Search (RoPARS) planning tool for village searches 
developed at Colorado State University can assist military 
planners with this tedious process.  The tool consists of a 
graphical user interface and a resource allocation engine.  Its 
output is a mission plan that is robust against uncertainty in 
the battlefield environment (e.g., unit speed, temperature, 
enemy contact).  The contributions of this paper include the 
RoPARS tool and its robustness concepts, mathematical 
models, and resource allocation heuristics. 
 
1. INTRODUCTION 
 
Technology Center, ISTeC (ISTeC.ColoState.edu),  is 
organizing the PAR (People-Animals-Robots) multi-
disciplinary research laboratory [8] to study how teams of 
people, animals, and robots can be used together in new, 
synergistic ways in a variety of environments, including 
health care, search and rescue, and military operations. This 
effort is part of that PAR Lab. 
 In the modern, fast-paced, high technology military, 
making decisions on how to best utilize resources to 
accomplish a mission with a set of specified constraints is 
difficult .  A Cordon and Search of a village (i.e., village 
search) is an example of such a mission.  Leaders must plan 
the mission, assigning assets (e.g., soldiers, robots, 
unmanned aerial vehicles, military working dogs) to 
accomplish the given task in accordance with orders from 
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higher headquarters.  Computer tools can assist these leaders 
in making decisions, and do so in a manner that will ensure 
the chosen solution is within mission constraints and is 
robust against uncertainty in environmental parameters.  
Currently, no such tools exist at the tactical or operational 
level to assist decision makers in their planning process and, 
as a result, individual experience is the only tool available.  
This paper introduces the Robust People, Animals, and 
Robots Search (RoPARS) planning tool for village searches 
that coordinates soldiers, military working dogs, and robots.  
The contributions of this paper include the RoPARS tool 
and its robustness concepts, mathematical models, and 
resource allocation heuristics.  The result is a decision-
making aid for military leaders to use during the mission 
planning phase of an operation. 
 The state of the art for village search planning is limited 
to individual experience and basic data tables from military 
Field Manuals ([10], [9]).  The result is dramatic variation in 
the quality of a plan, its ability to account for uncertainty, 
and the resulting confidence in its success.  The RoPARS 
simulation tool improves mission planning by incorporating:  
(1) mathematical models that represent people, animals, and 
robots (PAR) and account for uncertainty in the 
environment; (2) robustness metrics that assist decision 
makers in managing complex processes with a high degree 
of certainty regarding tactical mission completion; and (3) 
heuristics based on those models and metrics that result in 
near-optimal resource allocations (i.e., completing a village 
search by its deadline with maximum probability).  The 
output of the tool is a recommended resource allocation for 
the village search mission that is expected to meet the 
provided constraints in a timely manner and reduce the risk 
for those involved in the mission. 
 The RoPARS tool automates many functions of the 
planning process thus freeing planners for other tasks.  
Through a graphical user interface (GUI), the tool imports 
Environmental Systems Research Institute (ERSI) standard 
shapefiles of the search area (many of which are currently 
available in the Urban Tactical Planner library), accepts user 
inputs regarding the plan (e.g., phase lines, boundary lines, 
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search team types and compositions, target buildings), 
creates a resource allocation using static allocation 
heuristics (e.g., Minimum search heuristic, genetic 
algorithm), evaluates the performance of the allocation 
using quantifiable measures, and graphically displays at a 
user-selected rate the resulting plan.  This automated 
mission analysis tool uses stochastic information, is faster 
than human generated solutions, and is more reliable in 
terms of the robustness of its results than existing methods.  
Inevitably this will contribute to better, more informed 
decisions for military commanders in combat operations in 
the contemporary operating environment. 
 The remainder of the paper is organized as follows.  
The village search problem background is introduced in 
Section 2.    Section 3 reviews related work in the fields of 
robustness and resource allocation.  A description of the 
RoPARS tool is in Section 4. In Section 5, the simulation 
set-up is described and results are presented.  Finally, we 
present our conclusions in Section 6. 

2. BACKGROUND 
In a military village search problem, there are one or 

more target buildings that require searching.  The units that 
conduct the search can consist of numerous different forces 
with the primary ones being human teams of soldiers, 
human teams augmented with military working dogs, and 
human teams augmented with search robots.  At the basic 
level, the problem is a resource allocation problem where 
search resources (teams) must be assigned to target 
buildings.  This resource allocation problem in itself is 
computationally complex.  Often this problem is made more 
difficult by the introduction of constraints on the solution.  
These constraints take the form of boundary lines (lines that 
demarcate allowable search areas for teams), phase lines 
(ground reference lines that act as synchronization barriers 
controlling the forward movement of the search teams), and 
directions of advance (limits search direction).  An example 
village search problem is shown in Figure 1.   

The operating environment for these searches contains 
numerous uncertainties that render exact solutions 
impractical.  These uncertainties include but are not limited 
to factors such as varying search times, encounters with the 
enemy, weather impacts on the search, and mechanical 
malfunctions.  A resource allocation based on expected 
values will frequently not produce the best solution when 
these uncertainties are incorporated.  It is therefore our goal 
to develop a near optimal resource allocation for the village 
search problem that is robust against these uncertainties.  

3. RELATED WORK 
At a high level of abstraction, the village search 

problem is similar to the multiple traveling salesmen 
problem (mTSP).  Like the mTSP, each target building 
(city) must be visited once by only one search resource 
(salesman).  To complete the comparison, the salesmen start 
and end at the same location.  The main difference between 
the village search problem and mTSP is that the village 
search problem incorporates time spent searching at the 
nodes into the problem statement whereas the mTSP domain 
generally does not include time spent in the visited cities.   

There has been extensive research into solutions for the 
TSP ([6], [11]) and mTSP problem [3] due to their wide 
applicability and complexity.  Here we review only works 
that use genetic algorithms to find a solution. 

The work in [14] models a steel rolling factory as an 
mTSP problem and uses a genetic algorithm to produce 
solutions.  Similar to the village search problem, the steel 
rolling problem has constraints that reduce the number of 
valid solutions.  The steel rolling problem considers time at 
a node instead of distance between nodes.  Unlike our work 
though, their genetic algorithm uses discrete values instead 
of stochastic information and is not concerned with the 
robustness of the solution.  

In [12], a genetic algorithm is used to produce solutions 
for a global satellite survey network problem.  This problem 
domain was transformed into an mTSP problem where the 
salesmen are satellites and the cities are survey jobs for the 
satellites.  The objective of the research is to find a minimal 
cost route between survey points using a cost matrix to 
define the edge cost.  In this domain, the problem is 
restricted to deterministic values and is not concerned with 
robustness.  Additionally, the problem does not have 
limiting constraints on the solution such as the boundary 
lines of the village search problem. 

  The work in [16] transforms a multiple robot mine 
clearing problem into an mTSP problem.  In this research, 
multiple robots must move to multiple mines and remove 
those mines in a cooperative manner.  The authors use a 
genetic algorithm to find a solution that minimizes the paths 
the robots traverse while removing all the mines.  As with 
the other works surveyed, this work uses deterministic 
values and does not consider uncertainty in its calculations.  

Figure 1. Example village search mission with eight target 
buildings (Tj), a unit boundary, a restrictive phase 
line, and a direction of advance. 



Additionally, the mine removal time (equivalent to the 
search time of target buildings) is not considered in the 
problem.   

There is much TSP and mTSP research to provide near 
optimal solutions to a particular domain.  The solution 
techniques vary in heuristic style and in choices like 
sequential versus parallel execution of the heuristics but 
none of the works surveyed address robustness.   

4. RoPARS TOOL  
 
4.1. ROBUSTNESS AND VILLAGE SEARCH 

Solutions to problems are often highly valued if they 
are robust.  In the village search domain, military leaders 
desire a solution to the problem that is able to withstand the 
effects of uncertainty.  This is evidenced by the common 

goes out the window as soon as 
A robust mission plan that 

can survive the effects of the unknown is valuable.  
However, the definition of the term robustness  is 
frequently unclear.   

The three robustness questions that help define 
robustness for a system are [2]:  (1) What behavior of the 
system makes it robust? (2) What uncertainties is the system 
robust against? and (3) Quantitatively, exactly how robust is 
the system?   

In the search of a village such as shown in Figure 1, the 
robustness questions can be answered differently depending 
on the performance objective in question.  To illustrate the 
application of the questions to this domain, we will define 
the system to be robust if all the search resources (SRs) 
complete their building searches prior to the mission 
deadline time (MDT).  This is a time constraint by which all 
teams must complete.  The uncertainties against which the 
system is robust are variability in the ideal search rates of 
the search resources and variability in the ideal movement 
rates of the search resources.  The uncertainties the 
RoPARS tool models are not limited to these choices.  Any 
uncertainty that can be modeled may be incorporated into 
the robustness metric. To answer the third robustness 
question, we use the FePIA method. 

The FePIA (Features, Perturbation parameters, Impact, 
Analysis) method  [1] is a framework for measuring 
robustness.  Using the FePIA method, the following are 
identified: (1) the performance features that determine if the 
system is robust, (2) the perturbation parameters that 
characterize the uncertainty, (3) the impact of the 
perturbation parameters on the performance features, and 
(4) the analysis to quantify the robustness.  As these steps 
are followed, the robustness metric for a system is created 
(other examples of robust resource allocations can be found 
in [8] and [13]).  

First, we define the search resource completion time for 
team i (RCTi) to be the performance feature for this system.  

If there are m search resources, then there are m 
performance features.  The perturbation parameters for step 
2 are the same uncertainties outlined in the previous 
paragraph.  The impact of the perturbation parameters on 
the performance feature is that they will either increase or 
decrease the value of RCTi.  For example, search resource i 
may have an estimated search rate of 0.65 m2/s based on 
user input.  However, the true search rate may less than that 
due to an unanticipated problem such as the illness of a 
search team member.  Thus, it will take longer to search 
buildings and the value of RCTi will increase. 

The analysis to quantify the robustness of the system is 
complex and the reader is referred to [7] for a more detailed 
discussion.  To summarize, the time to search a given 
building is a complicated function of factors that include the 
building characteristics, search team characteristics, and 
probability mass functions (pmfs) of the relevant 
uncertainties. This results in a pmf that represents the 
building search time. To calculate RCTi it is necessary to 
convolve (assuming independence) the building search time 
pmfs for the buildings assigned to that team and the 
associated road segment traversal pmfs resulting in the 

mf.   
 It is assumed that the search resources have adequate 
supporting elements to operate independently and therefore 
the search resource completion times are independent within 
a phase line area. If there are no phase lines constraining the 
search, the stochastic robustness metric, SRM, of [7] is 
defined as the product of the all the teams  probabilities of 
completing before the MDT. That is, the SRM is the 
probability that all resources (teams) will complete by the 
MDT. If phase lines exist, then the maximum of the search 

pmfs for the phase line area is calculated.  The 
resulting pmf is used as the initial value pmf for each search 
resource RCT in the next phase line area.  Then the SRM is 
calculated using the RCT values of the last phase line area. 

4.2. ENVIRONMENT 
The village search mission environment is defined by 

its boundary lines and the assignment (grouping) of search 
resources to specific boundary line areas.  Assuming that at 
least one boundary line is present, a village search problem 
solution space has many combinations of the number of 
search resources to boundary line area assignments to 
explore.  For example, if there are five search resources and 
two boundary line areas, then there exist four valid grouping 
possibilities (one SR on the east side, four SRs on the west 
side (1,4), two SRs on the east side, three SRs on the west 
side (2,3), etc.).  If more boundary lines exist (i.e., two 
boundary lines) and five SRs are used then a grouping tuple 
may be (2,2,1).   
4.3. MINIMUM SEARCH  HEURISTIC 

The minimum search heuristic was inspired by the 
original two-phase greedy heuristic in [5].  It is modified to 



fit the village search domain and its constraints.  It is a fast, 
deterministic heuristic and thus can provide valid solutions 
in a time constrained environment. 
 The minimum search heuristic is used to find a solution 
for one specific grouping tuple.  The heuristic is 
deterministic and will assign the same starting building 
locations for each execution if unguided.  To expand the 
search area and improve the solution, the heuristic was 
modified to randomly select starting building locations for 
each search resource.  This forces the heuristic to explore 
other solutions.  The pseudocode for the minimum search 
heuristic is shown in Figure 2. 

  
Figure 2. Minimum search heuristic pseudocode. 

4.4. VILLAGE SEARCH GENETIC ALGORITHM 
The minimum search heuristic provides valid 

solutions but in general does not provide good quality 
solutions due to its limited exploration of the search space.  
The village search genetic algorithm (VSGA) compensates 
for this weakness by exploring the space more broadly.   

The VSGA is a modification of a classic evolutionary 
genetic algorithm.  Its pseudocode is shown in Figure 3.  
The VSGA uses the minimum search heuristic solution as a 
seed chromosome.  The other chromosomes in the 
population are generated randomly (ensuring valid 
chromosomes).  During chromosome generation, a look-up 
table is created that cross-references SR index values to SR 
absolute reference values (Figure 4a).  The reason for this 
table will be discussed later.  The VSGA uses stochastic 
universal sampling for the selection of the next population.  
In this technique, selection bias with regard to the expected 
reproduction rate is avoided and the next population is 

virtual roulette wheel [4].  In 
each generation, chromosomes are subjected (using a 
chosen probability) to crossover and mutation operators.  
Then each chromosome in the population is evaluated using 
the stochastic robustness metric as the fitness function.  The 
details of the chromosome operators and the fitness function 
are described in subsequent paragraphs. 

At its most basic level, a chromosome for the VSGA 
consists of .   An example strand is shown 
in Figure 4b.  The strand is an array composed of target 
building number/search resource index pairs.  The strand 
represents target buildings, their assigned search resources, 
and the scheduling order of the target buildings.  The 
building number/SR index 
defines a global ordering with pairs in the leftmost array 
position being first in time.  
determined by the number of target buildings within its 
boundary line and phase line area.  The VSGA uses strands 
due to the constraints placed on the solution by the problem 
domain such as boundary lines that limit crossover and 
mutation changes. 

  

 
Figure 3. Village search genetic algorithm pseudocode. 

 
(a) 

 
(b) 

Figure 4. Village search genetic algorithm chromosome 
components:  (a) search resource look-up table, 
and (b) chromosome     

 At the next higher level, the VSGA chromosome 
consists of one or more strands.  The number of strands in a 
chromosome is determined by the number of phase line 
areas multiplied by the number of boundary areas.  In Figure 
5, an example chromosome is shown with its four 
component strands for a two phase line area by two 
boundary line area village search.  
fitness is evaluated, the strands are assembled as a whole 
into the chromosome and then the SRM is calculated.  
 The crossover operators in the VSGA are the 
scheduling and the matching crossovers.  The operators 
function using two randomly selected parent chromosomes 



from the population and they produce two child 
chromosomes.  In a particular generation, the number of 
crossover operations is less than or equal to half the number 
of population chromosomes.  Examples for these operators 
are shown in Figures 6 and 7.  Similar to classic genetic 
algorithms, the crossover operators use two parent 
chromosomes in their operation.  Additionally, the 
crossover operators function on the same strand within each 
parent chromosome.  For example, a crossover operation 
could be performed on strand 0,0 (Figure 5) on both parent 
chromosome A and parent chromosome B.  Crossover (and 
mutation) operations can be performed on more than one of 
the strands in a chromosome if desired.  However, in this 
work, only one randomly selected strand per chromosome 
pair is operated upon in a given generation.  

  
Figure 5. Village search genetic algorithm chromosome.  

 
Figure 6. Village search genetic algorithm scheduling 

crossover example. 

 The scheduling crossover operation operates as follows.  
A single crossover point is randomly chosen and then the 
sub-strand to perform the crossover upon is randomly 
chosen.  Unlike crossover operators described in [15] that 
function on the , 
the VSGA crossover operator chooses the 
sub-strand of the strand for crossover.  Next, the scheduling 
order of the target buildings in the selected sub-strand of 
parent chromosome A are re-ordered to match the 

scheduling order of parent chromosome B.  The operation is 
performed sed. 

 
Figure 7. Village search genetic algorithm matching 

crossover example. 

 The matching crossover operates similarly to the 
scheduling operator.  A single crossover point is randomly 
chosen and then a sub-strand is randomly chosen.  Each 
target building within the chosen sub-strand of parent A is 
assigned the search resource it has in parent B.  The 
operation is then repeated with the parent chromosomes 
reversed (see Figure 7).   
 Similar to the crossover operators, the mutation 
operators function on a strand within a chromosome.  Again, 
the operators can be performed on more than one strand but 
as with the crossover operators it has been limited to one 
strand for the example in this paper.  Examples for the 
scheduling and matching mutation operators are shown in 
Figures 8 and 9. 

 
Figure 8.  Village search genetic algorithm scheduling 

mutation example. 

 
Figure 9. Village search genetic algorithm matching 

mutation example. 



The scheduling mutation operator begins by randomly 
selecting a target building/search resource pair to 
reschedule.  Next, it randomly selects a new order position 
in the strand.  It then inserts the target building/search 
resource pair at the newly selected destination creating a 
new scheduling order for that strand. 
 The matching mutation operator begins by randomly 
selecting a target building/search resource pair to mutate.  
The operator then randomly selects a new search resource 
from the set of search resources operating within the given 
boundary line area.  The selected search resource is then 
assigned to the target building creating a new matching. 
 All of the operators described in the preceding 
paragraphs operate in each generation.  For each operator, a 
user selected probability is used (i.e., probability of 
crossover, probability of mutation) to randomly apply the 
operator on the selected chromosomes.  As with all genetic 
algorithms, an optimal solution is not guaranteed.  
Additionally, its convergence rate and quality of solution is 
dependent upon implementation factors (e.g., population 
size, number of generations created, probability of 
crossover/mutation).  

As mentioned previously, through use of a look-up 
table (Figure 4a), the SR indices are associated with absolute 
SR identification numbers.  Chromosome SR look-up tables 
are inherited from parent to child during crossover and 
mutation operations.  We use index tables so that we can 
search multiple combinations of search resources in a 
grouping without generating invalid chromosomes during 
crossover operations.  An example of how invalid 
chromosomes could occur follows.  In parent chromosome 
A, absolute search resources 1 and 4 are on the 
side of a boundary line while resources 0 and 3 are on the 

 (in group notation - <1,4|0,3>).  In parent 
chromosome B, absolute search resources 0 and 3 are on the 

1 and 4 are on 
the  (<0,3|1,4>).  A matching crossover 
operation could attempt to assign search resource 3 to the 

 a child chromosome of parent A and B that 
 

(resulting in a group <1,3|0,3>).  Because a search resource 
can only search on one side of a boundary line, this is an 
illegal chromosome.  With our index representation, both 
search resource 4 and 3 can be represented in the strand as 
SR Index 1 (group notation - <0,1|0,1>).  They can then 
conduct crossover operations without generating invalid 
chromosomes.  In this example, when the child chromosome 
A is assigned SR Index 1 during matching crossover, the 
valid absolute search resource number 3 is maintained from 
parent A and a valid chromosome is the result (<1,4|0,3>).  
Additionally, the generic representation allows us to explore 
the search area for a given resource assignment grouping 
(e.g., (3,2)) with less machine time than searching each 
resource assignment ordering individually. 

4.5. GUI DESCRIPTION 
 The RoPARS GUI preprocesses the data and allows a 
user to visualize the layout of a specific village and 
manipulate search resources and constraints.  The GUI 
allows the search area to be specified without tedious user 
action.  The GUI handles the creation of village data files to 
be processed by the RoPARS resource allocation engine. 
After an allocation is created by the RoPARS tool, a user 
can review the plan by viewing an animation that shows the 
search plan being conducted at a user selected speed. 
 The GUI represents a village by reading in a pair of 
Environmental Systems Research Institute (ESRI) standard 
shapefiles. One shapefile contains information on the 

 
shapefiles, many important pieces of data are derived. Aside 
from allowing the village to be graphically represented, they 
also allow the GUI preprocessor to calculate a building s 
center of mass  and approximate area, as well as 

the lengths of the roads. 
 After the shapefiles have been input, the GUI allows the 
user to perform many actions that will define the village 
search plan. A user can draw boundary and phase lines on 
the village , thus separating the village into 
distinct sections. The GUI assigns each section a color 
allowing the user to identify the buildings and roads in that 
section. A user can also select which buildings they need to 
search.  The GUI uses color to show which buildings will be 
searched and which buildings will not be searched. The final 
action a user can perform is selecting search teams for the 
village.  The user can select from three types of teams: 
human, military working dog, and robot. As well as being 
able to select the type of team, the user can edit certain 
aspects the team such as average search and movement 
rates. Figure 10 shows a model village with a boundary line, 
a phase line, and thirty target buildings. 
  After all the constraints for the search plan have been 
input, the GUI creates three data files and sends this 
information to the RoPARS resource allocation engine. 
These files include a road network adjacency file, a building 
data file, and a search resource data file. The road network 
adjacency file contains connection and length data for all the 
road segments in the village. A road segment is demarcated 
by two nodes.  Nodes occur where a road changes direction, 
at road intersections, at the closest point to a target building, 
and every 200 meters if no other break has occurred.  Every 
time a change is made to the village, (e.g., a new building is 
selected, a phase/boundary line is added) the nodes are 
updated. The building data file contains:   information about 
target building locations, the road segment node connected 
to the buildings, and the target buildings  area. The search 
resource data file contains: information about the types of 
search resources in the village, search resource movement 
rates, and search resource search rates. 



 
Figure 10. RoPARS tool GUI screen capture of an example village search scenario with a boundary line (green), a phase line 

(red), thirty target buildings (blue), and search resource input dialog box. 

 
Figure 11.  RoPARS tool GUI screen capture of an example resource allocation in playback mode with five search resources 

and their associated colored movement paths (brown, blue, purple, green, orange). 



 After the RoPARS resource allocation engine creates 
the resource allocation, a file containing the search plan is 
created and interpreted by the GUI. This file contains 
information on the specific routes individual teams will 
travel, the target buildings they will search, and the timing 
data for each team. This information allows the GUI to 
display an animation of the search plan (Figure 11). This 
animation is played at a user selected rate. 

5. SIMULATION RESULTS 
The results discussed here are based upon a test village 

search scenario using five search resources (four human 
teams, one military working dog team), 24 target buildings, 
and 64 road segment nodes.  A realistic mission deadline 
time was chosen of 1.5 hours.  Mission constraints included 
one phase line and one boundary line.  Additionally, the SR 
grouping was three search resources on the 

side (3,2).  To find the optimal solution, all possible 
combinations of boundary assignments should be explored.  
However, in this paper, only one grouping was tested as a 
proof of concept.   

The simulation results are based on 50 trials.  In each of 
the trials, the search resource movement rates and search 
rates differ from one trial to the next.  The charts shown 
here display the data collected from these 50 trials. 

The 
Colonel Maxwell who has 18 years experience in the Army 
and has planned and executed village search missions.  The 
expert solution was created by hand using only the tools 
currently available to military planners. 

The minimum search heuristic results are shown using 
50 sets of random building starting location assignments per 
trial.  Experiments were done with different numbers of 
random building starting locations ranging from 1 to 50.  
There was a 1.5% improvement in the SRM between one 
random starting location and 50 random starting locations; 
however, there was only a 0.08% improvement between 20 
random starting locations and 50 random starting locations.  
Thus, increasing the number of random building starting 
locations does not guarantee a proportional improvement in 
the quality of the solution. 

Experiments were conducted using population sizes of 
20, 50, and 100 chromosomes.  In each experiment, the 
chromosomes were drawn from a file of 100 randomly 
generated chromosomes such that the 50 chromosomes were 
a subset of those in the size 100 population and the 20 were 
a subset of those in the size 50 population.  For these 
experiments, the probability of crossover was set to 0.8 and 
the probability of mutation was set to 0.1.  Additionally, the 
stopping conditions for the genetic algorithm were set to 
1000 total generations or 200 generations with no change in 
the best solution.  Elitism was used thus ensuring the best 
solution was kept in the population across generations. 

 On average, the quality of the solutions produced by the 
VSGA was better than the other approaches.  The trial 
average of the VSGA was 1.75% better than the expert 
average and 3.92% better than the minimum search average.  
For larger village search scenarios, the length of time to 
calculate an expert solution will increase and its quality will 
probably decrease.  This makes using even a simple 
heuristic like minimum search valuable.  Additionally, it is 
hypothesized that the quality of the minimum search and 
VSGA will improve relative to the expert solution as the 
problem size increases.  
 The results are shown in Figure 12.  The expert solution 
performed better than the minimum search allocation 
primarily due to the human ability to choose initial starting 
locations that ensure routes to subsequent target buildings 
are not too long.  The minimum search heuristic is a greedy 
heuristic and does not account for the long term impact of 
its choices.  This results in allocations that are relatively 
non-robust.  The reader is also reminded that the quality of 
the expert solution will vary greatly depending on the 
experience and expertise of the planner. 

 
Figure 12.  Stochastic r minimum 

search, and VSGA allocations for 50 trials. 

As previously mentioned, experiments were conducted 
with varying population sizes for the VSGA in order to 
study the population size versus execution time tradeoff 
(Figure 13).  It is clear that some improvement is gained 
between population size 20 and 50 (an average of 0.56%).  
However, there is no improvement between population sizes 
of 50 and 100.  It is clear though that the average of three 
extra hours to complete the VSGA for 100 chromosomes 
compared to 50 chromosomes is not beneficial. 

6. CONCLUSIONS 
Determining resource allocations for military village 

search problems is a complex problem.  Current solutions 
produced by planning officers are time consuming and of 
unquantifiable quality.  We have presented the RoPARS 
tool for village search planning and two heuristics for use in 
its resource allocation engine.  The heuristics demonstrate 



that computer tools can create solutions for these problems 
and do so in a manner that is robust against uncertainty in 
the environment.  This can save military planners time and 
resources during the planning process and improve the 
quality of the resulting plan. 

Future work in this area includes increasing the size of 
the test scenarios in terms of target buildings and number of 
search teams.  Additionally, experiments can be done on the 
village search genetic algorithm to determine the best 
number of strands to perform crossover and mutation upon 
per generation.  Finally, additional research is needed to 
develop heuristics that can quickly and dynamically re-
evaluate the resource allocation plan should conditions 
change from those used during static resource allocation. 

 
Figure 13. Village search genetic algorithm stochastic 

robustness for varying population sizes. 
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