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Abstract
In the contemporary military environment, making decisions on how to best utilize resources to accomplish a mission
with a set of specified constraints is difficult. A Cordon and Search of a village (a.k.a. village search) is an example of such
a mission. Leaders must plan the mission, assigning assets (e.g. soldiers, robots, unmanned aerial vehicles, military work-
ing dogs) to accomplish the given task in accordance with orders from higher headquarters. Computer tools can assist
these leaders in making decisions, and do so in a manner that will ensure the chosen solution is within mission con-
straints and is robust against uncertainty in environmental parameters. Currently, no such tools exist at the tactical or
operational level to assist decision makers in their planning process and, as a result, individual experience and simplistic
data tables are the only tools available. Using robustness concepts, this paper proposes a methodology, a mathematical
model, and resource allocation heuristics for static planning of village searches that result in a decision-making tool for
military leaders.

Keywords
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1. Introduction

Colorado State University’s Information Science and
Technology Center, ISTeC (http://ISTeC.ColoState.edu),
is organizing the PAR (People–Animals–Robots) multi-
disciplinary research laboratory1 to study how teams of
people, animals, and robots can be used together in new,
synergistic ways in a variety of environments, including
health care, search and rescue, and military operations.
This effort is part of that PAR Lab.

On the modern battlefield, village searches are a fre-
quent mission for military ground forces. In the current
Global War on Terrorism environment, these searches are
conducted daily to clear villages, capture insurgents, con-
fiscate contraband, etc. In a village search problem, there
are one or more target buildings that require searching.
The search resources that conduct the search can consist
of soldiers, military working dogs (MWDs), explosive ordi-
nance detachments (EODs), military aircraft, unmanned
aerial vehicles (UAVs), and electronic surveillance. The

problem of assigning search resources to target buildings
is in itself a computationally complex problem. Often this
problem is made more difficult by the introduction of con-
straints on the solution, such as boundary lines (lines that
demarcate allowable search areas for teams), phase lines
(ground reference lines that act as synchronization barriers
controlling the forward movement of the search teams),
directions of advance (limits search direction), and time
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deadlines. An example village search problem is shown in
Figure 1.

When planning a village search, military staff officers
must analyze the problem, allocate resources to the mis-
sion, estimate the amount of time required to complete the
mission, plan for contingencies, and publish a mission
plan. Given the diversity and the unpredictability of the
battlefield along with the constraints of the mission, doing
all of these things is an arduous task. In addition, the oper-
ating environment for these searches contain numerous
uncertainties including, but not limited to, varying search
times, encounters with the enemy, weather impacts on the
search, and mechanical malfunctions. These uncertainties
make finding exact solutions impractical. A resource allo-
cation based on expected values will frequently not pro-
duce the best solution when these uncertainties are
incorporated. It is therefore desirable to develop a near-
optimal resource allocation for the village search problem
that is robust against these uncertainties.

Despite the high frequency of this mission type, no
comprehensive automated tools currently exist to assist
military leaders in planning the execution of the searches.
To develop their plans, officers must rely on the experi-
ence they have gathered during their years of service and
the limited data tables provided in military Field
Manuals2,3 for factors such as ground movement rates. As
a result, the quality of a plan, its ability to account for
uncertainty, and the resulting confidence in its success var-
ies dramatically.

An automated tool for village search planning for both
training and operational purposes would greatly assist mil-
itary leaders in their decision-making process in this envi-
ronment where lives are at risk. To be effective, the tool
requires the following capabilities: the ability to model the

search area using automated digital maps of the search
area, such as Environmental Systems Research Institute
(ESRI) shapefiles; use probabilistic models to calculate
search times; determine a good solution from multiple
possible resource allocations; and execute within the time
constraints of the planning process.

Here we introduce the Robust People, Animals, and
Robots Search (RoPARS) planning tool. It improves mis-
sion planning by incorporating: (1) mathematical models
that represent PAR and account for uncertainty in the
environment; (2) robustness metrics that assist decision
makers in managing complex processes with a high degree
of certainty regarding tactical mission completion; and (3)
heuristics based on those models and metrics that result in
near-optimal, robust resource allocations (i.e. those that
complete a village search by its deadline with high prob-
ability). The output of the tool is a recommended resource
allocation for the village search mission that is expected to
meet the provided constraints in a timely manner and
reduce the risk for those involved in the mission.

The RoPARS tool automates many functions of the
mission planning process, thus freeing planners for other
tasks. Whether in training or during operational deploy-
ments, the planning staff could use the tool to automate
select aspects of the time-consuming course of action
development and wargaming portions of the decision-
making process. Through a graphical user interface (GUI),
the planners employ the tool to import standard ESRI sha-
pefiles (http://www.esri.com) of the search area (many of
which are currently available in the Urban Tactical Planner
library – http://www.erdc.usace.army.mil), accept inputs
regarding the plan (e.g. phase lines, boundary lines, search
team types and compositions, target buildings), create a
resource allocation using static allocation heuristics (i.e.
minimum search heuristic, genetic algorithm, beam search
heuristic), evaluate the performance of the allocation using
quantifiable measures, and graphically display the result-
ing plan at a user-selected rate. The tool requires no addi-
tional operator training beyond the basic operational
planning and graphics production skills used in the non-
automated method and is thus easy to field. In addition, the
tool can operate on standard issue laptops, preventing
expensive procurement issues. Finally, the automated mis-
sion analysis tool uses stochastic information, is faster than
human generated solutions, and is more reliable in terms
of the robustness of its results than existing methods.
Inevitably this will contribute to better, more informed
decisions for military commanders in contemporary com-
bat operations.

The contributions of this paper include: (1) robustness
concepts for village searches; (2) a methodology with
mathematical models for village searches; (3) resource
allocation heuristics that produce robust mission plans; (4)
evaluation and analysis of these heuristics through

Figure 1. An example village search mission with eight target
buildings (Tj), a unit boundary, a restrictive phase line, and a
direction of advance.
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simulation; and (5) the integration of the model, robust-
ness, and heuristics into the RoPARS tool along with a
user interface. The methodology describes how to inte-
grate uncertainty into a model of a village search. Its
mathematical models allow for the objective evaluation of
resource allocations. Finally, the resource allocation heur-
istics select an allocation that results in an acceptable plan
based upon the computation time required and the amount
of computing resources used.

With these goals in mind, Section 2 of this paper pre-
sents work related to the village search problem. Section 3
provides a discussion of the robustness metric developed
by Ali et al.4 and Saleh and Chelouah.5 In Section 4, our
model for a basic village search mission is discussed. The
resource allocation heuristics we developed for the village
search model are described in Section 5. An overview of
our RoPARS tool GUI is provided in Section 6. Our simu-
lation results are shown in Section 7 and, finally, in
Section 8 we present our conclusions.

2. Related work

There are three categories of research that possess simila-
rities to our work: combat simulations, vehicle routing,
and traveling salesmen-type problems. These similarities
can include the goals of the research (e.g. create accurate
military simulations, determine near-optimal plans) and
the methods used in the research (e.g. using genetic algo-
rithms, simulation). However, as discussed in the follow-
ing paragraphs, our work differs from these works in
substantial ways.

Much work has been done in the field of military com-
bat simulations. Many simulations are based on determi-
nistic models,6,7 although work has been done on
stochastic models.8–11 The purpose of these simulations
generally fall into two categories: training aids for troops
or strategic-level simulations for theater-level planning.
Within some of these simulations, urban movement and
combat at the soldier level is modeled, but it is not for the
purpose of resource allocation and decision making. In
addition, many of the urban or village simulation models
rely on deterministic look-up tables for their input data or
stochastic models that account for randomness in only the
movement direction and combat strategy. The RoPARS
tool differs from these simulations by providing a resource
allocation that assists the military leader in making opera-
tional decisions. The RoPARS tool utilizes stochastic
methods to model uncertainty and to determine robustness.

The vehicle routing problem (discussed in works such as
Desrochers et al.,12 Laportea et al.13 and Potvin14) has simi-
larities to our work. This problem can have multiple
resources (vehicles) that are assigned to multiple targets
(pick-up/drop-off locations) they must service. Like the

village search problem, constraints can be placed on the
environment, such as service areas (boundaries) and time
windows for service. The optimization goal in the vehicle
routing problem varies, such as minimizing distance tra-
velled, minimizing completion time, and minimizing mone-
tary cost. The problem is different from our domain in that
we model uncertainty, quantify the robustness of resource
allocations, and incorporate the service time at the nodes.

With regard to resource allocation problems, the village
search problem is also similar to the multiple traveling
salesmen problem (mTSP). Like the mTSP, each target
building (city) must be visited once by only one search
resource (salesman). One difference between the village
search problem and mTSP is that the village search problem
incorporates time spent searching at the nodes into the prob-
lem statement; the mTSP generally does not include time
spent in the visited cities. In addition, there are constraints
(e.g. phase lines, boundary lines) on the problem in the vil-
lage search domain that are not included in the mTSP.

There has been extensive research into solutions for the
TSP14,15 and the mTSP16 due to their wide applicability
and complexity. Here we review only works that use
genetic algorithms to find a solution, because those are the
closest comparisons.

The work of Tang et al.17 models a steel rolling factory
as a mTSP and uses a genetic algorithm to produce solu-
tions. Similar to the village search problem, the steel roll-
ing problem has constraints that reduce the number of
valid solutions. The steel rolling problem considers time at
a node, but not distance between nodes. Unlike our work,
their genetic algorithm uses deterministic values instead of
stochastic information and is not concerned with the
robustness of the solution.

In Sabuncuoglu and Bayiz,18 a genetic algorithm is used
to produce solutions for a global satellite survey network
problem. This problem domain was transformed into a
mTSP where the salesmen are satellites and the cities are
survey jobs for the satellites. The objective of the research
is to find a minimal cost route between survey points using
a cost matrix to define the edge cost. In this domain, it is
restricted to deterministic values and is not concerned with
robustness. In addition, the problem does not have limiting
constraints on the solution, such as the boundary lines of
the village search problem.

The work of Yu et al.19 transforms a multiple robot
mine clearing problem into a mTSP. In this research, mul-
tiple robots must move to multiple mines and remove those
mines in a cooperative manner. The authors use a genetic
algorithm to find a solution that minimizes the paths the
robots traverse while removing all the mines. Like other
works surveyed, this work uses deterministic values and
does not consider uncertainty in its calculations. In addi-
tion, the mine removal time (equivalent to the search time
of target buildings) is not considered in the problem.

Maxwell et al. 33
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There is much TSP and mTSP research to provide near-
optimal solutions in a particular domain. The solution
techniques vary in heuristic style and in choices, such as
sequential versus parallel execution of the heuristics, but
none of the works surveyed address robustness.

3. Defining robustness

We have defined robustness and a methodology to calcu-
late the robustness of a resource allocation in Ali et al.4

and studied it within a variety of systems.20,21,33 We have
adapted the concept of robustness to the problem of vil-
lage search planning.

The robustness metric for a given resource allocation
can be developed using the FePIA (Features, Perturbation

parameters, Impact, Analysis) method,4 where the follow-
ing are identified: (1) the performance features that deter-
mine if the system is robust; (2) the perturbation
parameters that characterize the uncertainty; (3) the impact
of the perturbation parameters on the performance fea-
tures; and (4) the analysis to quantify the robustness. The
FePIA method provides a formal mathematical framework
for modeling the village search environment.

The performance features are those measurable system
attributes that can be compared against the robustness cri-
teria. For a village search, this can be the time required for
a team to finish searching its assigned buildings. That is, if
there are m search teams, there are m performance features,
where each feature is the time a team finishes searching its
assigned buildings. For the system to be robust, all search
teams must complete before the mission time constraint.

Perturbation parameters are the system uncertainties
that may affect the actual mission completion time. These
may include weather, estimation error in search area
dimensions, variability in search resource movement rates,
frequency and number of casualties, equipment losses, and
number of enemy combatants encountered. Each of these
elements can impact the actual mission completion time in
a positive or negative manner, but the key point is that
their actual values at the time of the mission are uncertain
when planning is conducted. The system must account for
these perturbations and recommend a resource allocation
that is robust with respect to these uncertainties.

The impact of the perturbation parameters on the per-
formance features can be described mathematically. For
example, a stochastic model may be used to describe the
effects of enemy combatants on the search of a given
building. The collective effects of the uncertain perturba-
tion parameters on the performance features must then be
evaluated to find the most robust allocation of assets.

For the analysis step, stochastic (probabilistic) informa-
tion about the values of these parameters whose actual val-
ues are uncertain is used to quantify the degree of

robustness. The resulting stochastic robustness metric
(SRM) is the probability that a user-specified level of sys-
tem performance can be met. In this domain, the perfor-
mance metric is the completion time for the search of all
the target buildings.

Using these FePIA steps, the SRM for a village search
can be determined. Once this is done, heuristics for plan-
ning robust resource allocations can be designed.

4. Village search robustness model
4.1 Overview

A quantitative mathematical model for a village search is
presented in this section. To illustrate the problem,
Figure 2 provides an example allocation for a village
search scenario. Conducting the search are search
resources (SR = {SR1, SR2, .,}) where SRi can represent
a human search team, a MWD team, an EOD, a robot, etc.
In general, searches may be limited to only certain team
types, and the search rates are dependent on the type. As
shown in the figure, a village is composed of a set of tar-
get buildings (T = {T1, T2, .,}). Also shown are the
movement paths (Mijk) that have associated times to travel
between buildings j and k for a search resource i, (SRi).
Military planners attempt to allocate the resources (search
resources) to the tasks (building searches) in a manner that
will meet the given performance requirement (village
search mission deadline time (MDT)). A model of this
scenario must account for factors such as the search rate
of the search resources, the movement time between struc-
tures, the ordering of the structure searches, and the pertur-
bations discussed in the previous section.

To apply the robustness procedure to the village search
scenario, one must answer the three robustness questions
in Ali et al.20 Namely: (1) What behavior of the system
makes it robust? (2) What uncertainties is the system
robust against? (3) How is robustness of the system
quantified?

4.2 Robust system behavior

The required behavior for the system to be considered
robust may be one of or a combination of criteria, such as
a specified time constraint is met, a specified percentage
of casualties or less occurs, or no high value equipment is
destroyed. The robustness criterion considered in this
study is the MDT or time by which the mission must be
completed.

4.3 System uncertainties

A system of this type will need to be robust against a vari-
ety of dynamic uncertainties that occur in the field, includ-
ing the number of enemy combatants encountered,
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weather, engagement with explosive hazards, treatment
and evacuation of casualties, changes to the availability of
resources, and unanticipated animal (MWD) behavior.
The village search model can incorporate any perturbation
that can be described by a probability mass function (pmf).
For example, future temperature values, future precipita-
tion, and building sizes have been modeled using a variety
of distributions functions.22–24 This paper considers the
variability in the resource search rate, σi, and variability
in the resource ground movement rate, gi, for search team
i as the perturbations. These values are random variables
with a distribution of rates. The base rates, si and gi, are
used as input variables to an overall completion time func-
tion that is defined later. The definition of these pmfs is a
separate research problem and is not addressed here, but
one way to develop them is by collecting data from train-
ing missions.

While not used in this paper, our model can support the
modification of si and gi by perturbations such as tem-
perature. If the temperature is higher than an accepted nor-
mal range (from which the nominal search and ground

movement rates are determined) then the pmfs for search-
ing and ground movement may shift in the negative direc-
tion, reflecting a slower overall rate.

4.4 Quantifying robustness

To make determinations on resource allocations with
regard to robustness, a quantitative method for calculating
robustness is required. A list of notation used in this model
is shown in Table 1. Applying the general stochastic model
of robustness developed in Saleh and Chelouah,5 this is
defined as the probability that a user-specified level of sys-
tem performance can be met. Let the maximum search
resource completion time for the set of search teams be
RCTmax. Then the robustness requirement is RCTmax ≤
MDT.

A set of target buildings has a corresponding set of
areas, A = {A1, A2,.,}, that may include multiple floors.
The resource’s ground movement rate, gi, is the rate that
the resource can move tactically along a movement path
Mijk. It is assumed that the waiting time for movement on

Figure 2. An example resource allocation for a village search with three search resources (human team, robot team, and a military
working dog team) allocated to six tasks (building searches) with six movement paths.
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movement path Mijk due to multiple resources using the
same path is negligible. Therefore, completion time, Cijk,
for search resource i searching a given target building Tj

and traversing the movement path from building k is sim-
ply the area of the building divided by the search rate plus
the distance of the movement path to the building divided
by the ground movement rate. In this environment, multi-
ple paths may exist between two buildings and each search
resource moves along the paths at different rates. To effi-
ciently determine the shortest traversal time path between
two buildings, a stochastic all-pairs, shortest-path algo-
rithm is used.26 This algorithm identifies the minimum tra-
versal time road segment(s) between all building pairs for
search resource i using road segment cumulative mass
functions evaluated at a user-selected probability level.
Representing path fitness in terms of time instead of dis-
tance allows for the future incorporation of uncertainties
that effect path traversal time, such as encounters with
improvised explosive devices.

The completion time function is subject to its input vari-
ables Aj and Mijk; and its perturbation parameters si and gi.
These are random variables. Given these random variables,
the completion time for team i on target building j and its
corresponding movement path have a distribution function
defined as

Cijk = fcijk
(Aj, σi, Mijk, γ i): ð1Þ

Equation (1) results in a random variable with a distri-
bution consisting of building completion times. It is
assumed that the pmf for this function will be created at
run time using input values for the perturbation parameters
(e.g. movement rates and search rates).

It is assumed that the search resources have adequate
supporting elements to operate independently within a

phase line area. Assume there are U phase lines. This
results in U + 1 phase line areas. The effect of the phase
line is barrier synchronization. In addition, the perturba-
tion parameters considered are independent with respect to
the search resources and therefore the resource completion
times are independent when evaluated within a phase line
area.

Let p be an index ({1,2,.,nix}) into an ordered set !ix

of target buildings for search resource i in phase line
area x. Then, the p represents the pth entry in the set. In
Equation (2), we sum the building completion times for a
search resource to obtain the resource completion time,
RCTix. Here, RCTix is the completion time for SRi in phase
line area x, where nix is the number of target buildings in
its search set and CTp is the completion time for the pth
building in the set !ix:

RCTix =
Xnix

p= 1

CTp: ð2Þ

Because we are working with discrete random variables
to express the uncertainty in the system, the completion
time is a pmf. Equation (2) can be expressed as a pmf, as
shown in Equation (3), where fRCTix

is the pmf for the com-
pletion time of SRi in phase line area x:

fRCTix
= fCT1

* fCT2
* # # # * fCTnix

: ð3Þ

The completion time distribution function for all search
resources in phase line area x is shown in Equation (4).
The result is a pmf for phase line area x that equals the
maximum of the pmfs for all search resources:

fPLx = max
8i

fRCTix
: ð4Þ

Table 1. Village search notation.

Name Description

SRM Stochastic robustness metric, probability that the village search completion time is less than MDT
RCTix Resource completion time for team i in phase line area x
RCTmax Maximum search resource completion time for the set of search teams
Aj Area of target building j
si Search rate for search resource i
Cijk Completion time for team i on building j moving from building k
CTp Completion time for team i on the pth building in its target set
gi Ground movement rate for search resource i
MDT Mission deadline time
Mijk Movement path from building k to building j for search resource i
nix Number of target buildings for search resource i in phase line area x
P Index into set of target buildings for search resource i in phase line area x
SRi Search resource i
Tj Target building j
U Number of phase lines
!ix Ordered set of target buildings for search resource i in phase line area x
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To find the completion time pmf for all search resources
over all U + 1 phase line areas, we convolve the phase
line distribution functions, as shown in Equation (5):

fComp = fPL(φ+ 1) * fPLU * # # # * fPL1: ð5Þ

We then define the SRM as the probability that all
search resources finish searching their target sets by the
MDT (Equation (6)):

SRM =P(Completion time≤MDT)=
ðMDT

$∞
fComp: ð6Þ

Thus, for a given resource allocation of search resources
to target buildings, the SRM provides the quantitative value
for the robustness of the allocation. Therefore, a set of pos-
sible allocations can be searched to determine the alloca-
tion that is most robust via the comparison of SRM values.

Building on the general discussion of Shestak et. al.,27

the robustness metric can be utilized in two manners for
the village search tool. In the first scenario, a military unit
is tasked to conduct a village search within a given time
constraint. Here the tool is used to calculate the resource
allocation that has the highest probability of meeting the
MDT. For the second scenario, a military unit is tasked to
search a village and requires an accurate estimate of the
completion time to allow for the planning of supporting
assets. In this case, the robustness metric is used to calcu-
late the completion time for the mission with a given prob-
ability (e.g. 95%). In this paper, we only examine the first
scenario, although it is easy to convert the heuristics to
accomplish the goals of the second scenario.

5. Resource allocation heuristics
5.1 Environment

The village search mission environment is defined by its
boundary lines and the assignment (grouping) of search
resources to specific boundary line areas. Assuming that at
least one boundary line is present, a village search problem
solution space has many combinations of the number of
search resources to boundary line area assignments to
explore. For example, if there are five search resources
and two boundary line areas, then there exist four valid
grouping possibilities (one SR on the east side, four SRs on
the west side (1,4), two SRs on the east side, three SRs on
the west side (2,3), etc.). If more boundary lines exist (i.e.
two boundary lines) and five SRs are used then a grouping
tuple may be (2,2,1).

5.2 Minimum search heuristic

The minimum search heuristic was inspired by the original
two-phase greedy heuristic.28 It is modified to fit the

village search domain and its constraints. It is a fast, deter-
ministic heuristic and thus can provide valid solutions in a
time-constrained environment.

The minimum search heuristic is used to find a solution
for one specific grouping tuple. To find the best solution
with the heuristic, the heuristic must be executed for all
possible tuples. The heuristic is deterministic and will
assign the same starting building locations for each execu-
tion if unguided. To expand the search area and improve
the solution, the heuristic was modified to randomly select
starting building locations for each search resource.
This forces the heuristic to explore other solutions. The
pseudocode for the minimum search heuristic is shown in
Figure 3.

5.3 Village search genetic algorithm

The minimum search heuristic provides valid solutions but
in general does not provide good-quality solutions due to
its limited exploration of the search space and its greedi-
ness. The village search genetic algorithm (VSGA) com-
pensates for these weaknesses by exploring the space more
broadly.

The VSGA is a modification of a classic evolutionary
genetic algorithm. Its pseudocode is shown in Figure 4.

Figure 3. Minimum search heuristic pseudocode.

Figure 4. Village search genetic algorithm pseudocode.
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The VSGA uses the minimum search heuristic solution as
a seed chromosome. The other chromosomes in the popu-
lation are generated randomly ensuring valid chromosomes
and that each possible search resource assignment combi-
nation is represented. During chromosome generation, a
look-up table is created that cross-references SR index val-
ues to SR absolute reference values (Figure 5(a)). The rea-
son for this table will be discussed later. The VSGA uses
stochastic universal sampling for the selection of the next
population. In this technique, selection bias with regard to
the expected reproduction rate is avoided and the next pop-
ulation is selected in one ‘spin’ of the virtual roulette
wheel.29 In each generation, chromosomes are subjected
(using a chosen probability) to crossover and mutation
operators. Then each chromosome in the population is
evaluated using the SRM as the fitness function. The

details of the chromosome operators and the fitness func-
tion are described in subsequent paragraphs.

At its most basic level, a chromosome for the VSGA
consists of multiple ‘strands.’ An example strand is shown
in Figure 5(b). The strand is an array composed of target
building number/search resource index pairs. The strand
represents target buildings, their assigned search resources,
and the scheduling order of the target buildings. The build-
ing number/SR index pair’s position in the array defines a
global ordering with pairs in the leftmost array position
being first in time. The strand’s length is determined by
the number of target buildings within its boundary line
and phase line area. The VSGA uses strands due to the
constraints placed on the solution by the problem domain,
such as boundary lines that limit crossover and mutation
changes.

At the next higher level, the VSGA chromosome con-
sists of one or more strands. The number of strands in a
chromosome is determined by the number of phase line
areas multiplied by the number of boundary areas. In
Figure 6, an example chromosome is shown with its four
component strands for a two-phase line area by two bound-
ary line area village search. When the chromosome’s fit-
ness is evaluated, the strands are assembled as a whole into
the chromosome and then the SRM is calculated.

The crossover operators in the VSGA are the schedul-
ing and the matching crossovers. The operators function
using two randomly selected parent chromosomes from
the population and they produce two child chromosomes.
In a particular generation, the number of crossover opera-
tions is less than or equal to half the number of population
chromosomes. Examples for these operators are shown in
Figures 7 and 8. Similar to classic genetic algorithms, the
crossover operators use two parent chromosomes in their
operation. In addition, the crossover operators function on
the same strand within each parent chromosome. For
example, a crossover operation could be performed on
strand 0,0 (Figure 6) on both parent chromosome A and
parent chromosome B. Crossover (and mutation) opera-
tions can be performed on more than one of the strands in
a chromosome if desired. However, in this work, only one
randomly selected strand per chromosome pair is operated
upon in a given generation.

The scheduling crossover operation operates as follows.
A single crossover point is randomly chosen and then the
sub-strand to perform the crossover upon is randomly cho-
sen. Unlike crossover operators described by Wang et al.25

that function on the ‘right’ portion of the parent chromo-
somes, the VSGA crossover operator chooses the ‘left’ or
‘right’ sub-strand of the strand for crossover. Next, the
scheduling order of the target buildings in the selected sub-
strand of parent chromosome A are re-ordered to match the
scheduling order of parent chromosome B. The operation
is performed again with the parents’ roles reversed.

Figure 5. Village search genetic algorithm chromosome
components: (a) search resource look-up table; (b)
chromosome ‘strand.’

Figure 6. Village search genetic algorithm chromosome.
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The matching crossover operates similarly to the sche-
duling operator. A single crossover point is randomly cho-
sen and then a sub-strand is randomly chosen. Each target
building within the chosen sub-strand of parent A is
assigned the search resource it has in parent B. The opera-
tion is then repeated with the parent chromosomes reversed
(see Figure 8).

Similar to the crossover operators, the mutation opera-
tors function on a strand within a chromosome. Again, the
operators can be performed on more than one strand, but
as with the crossover operators, it has been limited to one
strand for the example in this paper. Examples for the
scheduling and matching mutation operators are shown in
Figures 9 and 10, respectively.

The scheduling mutation operator begins by randomly
selecting a target building/search resource pair to resche-
dule. Next, it randomly selects a new order position in the
strand. It then inserts the target building/search resource

pair at the newly selected destination, creating a new sche-
duling order for that strand.

The matching mutation operator begins by randomly
selecting a target building/search resource pair to mutate.
The operator then randomly selects a new search resource
from the set of search resources operating within the given
boundary line area. The selected search resource is then
assigned to the target building, creating a new matching.

All of the operators described in the preceding para-
graphs operate in each generation. For each operator, a
user-selected probability is used (i.e. probability of cross-
over, probability of mutation) to randomly apply the oper-
ator on the selected chromosomes. As with all genetic
algorithms, an optimal solution is not guaranteed in a
finite amount of time. In addition, its convergence rate and
quality of solution is dependent upon implementation
factors (e.g. population size, number of generations cre-
ated, probability of crossover/mutation). As mentioned

Figure 8. Village search genetic algorithm matching crossover example.

Figure 7. Village search genetic algorithm scheduling crossover example.
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previously, through use of a look-up table (Figure 5(a)),
the SR indices are associated with absolute SR identifica-
tion numbers. Chromosome SR look-up tables are inher-
ited from parent to child during crossover and mutation
operations. We use index tables so that we can search mul-
tiple combinations of search resources in a grouping with-
out generating invalid chromosomes during crossover
operations. An example of how invalid chromosomes
could occur follows. In parent chromosome A, absolute
search resources 1 and 4 are on the ‘eastern’ side of a
boundary line, while resources 0 and 3 are on the ‘west-
ern’ side (in group notation – < 1,4|0,3 >). In parent chro-
mosome B, absolute search resources 0 and 3 are on the
‘eastern’ side and absolute search resources 1 and 4 are on
the ‘western’ side (< 0,3|1,4 >). A matching crossover
operation could attempt to assign search resource 3 to the
‘eastern’ side of a child chromosome of parent A and B

that has search resource 3 already assigned to the ‘west-
ern’ side (resulting in a group < 1,3|0,3 >). Because a
search resource can only search on one side of a boundary
line, this is an illegal chromosome. With our index

representation, both search resources 4 and 3 can be repre-
sented in the strand as SR Index 1 (group notation –
< 0,1|0,1 >). They can then conduct crossover operations
without generating invalid chromosomes. In this example,
when the child chromosome A is assigned SR Index 1 dur-
ing matching crossover, the valid absolute search resource
number 3 is maintained from parent A and a valid chromo-
some is the result (< 1,4|0,3 >). In addition, the generic
representation allows us to explore the search area for a
given resource assignment grouping (e.g. (3,2)) with less
machine time than searching each resource assignment
ordering individually.

5.4 Village search variable beam heuristic

The village search mission problem search space can be
represented as a rooted tree. Each node in the tree repre-
sents a partial mapping and associated set of unmapped
target buildings. At each level of the tree, another build-
ing/search resource pair is added to the parent’s partial
mapping. For each parent node, each possible combination
of search resource to unassigned building creates a child
node. This method ensures all possible allocations are gen-
erated but does create duplicate nodes that reduce execu-
tion efficiency.

Tree search algorithms, such as branch and bound, can
be used to find optimal solutions for this problem. Branch
and bound algorithms use lower bound and upper bound
estimates of the fitness function for a node. These esti-
mates bound the solution fitness of all nodes that are chil-
dren of the evaluated node. They then use the bounds to
prune portions of the search tree that do not contain an
optimal solution. Because branch and bound algorithm
execution times grow exponentially with the problem size,
alternative techniques are often used to find solutions.

A beam search branch ands bound algorithm is a modi-
fication of a basic breadth-first branch and bound heuristic.
As described in works such as Nair et al.30 and Quinn,31 it
expands at most a user-selected number of the best nodes
(also called the beam width) at each level of the search tree
and prunes the remainder. If the beam width is infinite,
then the heuristic executes as a complete breadth-first
branch and bound algorithm. While a finite beam width
does not guarantee an optimal solution, it does reduce the
execution time of the heuristic significantly to make the
technique feasible.

Here we describe the village search variable beam
(VSVB) heuristic. This heuristic is similar to the heuristic
used by Valentea and Alvesb,32 except that our beam width
simply varies by tree depth instead of varying at each level
according to a calculated threshold value. The VSVB is a
breadth-first branch and bound algorithm that searches for
the maximum SRM. The beam width is set to an initial
value and is then incremented by a constant as the tree

Figure 9. Village search genetic algorithm scheduling mutation
example.

Figure 10. Village search genetic algorithm matching mutation
example.
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depth increases. A maximum beam width is chosen prior
to execution to limit the search. The reason for the variable
beam width is that near the root of the tree, few actual allo-
cations have been made and the upper bound SRM calcula-
tion is extremely loose. A fixed beam width decreases the
percentage of total nodes searched as the depth of the tree
increases. Thus, relative to the fixed beam width search, the
variable beam width searches more nodes as the tree depth
increases when the upper bound calculation contains more
information. As our experiments showed, this modification
maintains the relatively quick execution time of the beam
search heuristic while providing better solutions. In the
event that the upper bound calculation results in nodes with
probability 1, we use the maximum lower bound as a tie
breaker. This is only relevant if there are more nodes with
probability 1 than the size of the beam width.

The VSVB uses a modified version of the minimum
search heuristic to calculate a lower bound SRM for each
evaluated node in the search tree. The modification
removes the random starting location component of the
minimum search heuristic and executes only the search for
minimum completion building/SR pairs (Figure 3, lines
4–10). Thus for each node, the lower bound SRM is the fit-
ness of the allocation to the current tree node combined
with the allocation created by the min-min solution for the
unassigned buildings.

The overall concept of the upper bound calculation is
to first find an earliest common starting time for all search

resources to begin searching the unassigned target build-
ings in the node. Then, the unassigned target building area
is divided equally and considered to be searched in paral-
lel. The upper bound SRM equals the SRM of the SR with
the highest probability of completing its search of its por-
tion of the unassigned target building area. This method
ignores the path traversal times between the unassigned
buildings to create a valid, but loose, upper bound.

Let the Unassigned Building Area for the current node
be denoted UBA. The minimum completion time
(MCompi) for each SRi is the starting pulse (i.e. the earliest
pulse with a non-zero value) for each search resources’
completion time pmf (Figure 11(a)). The highest value of
these minimum completion times (MCompmax) is identi-
fied (Figure 11(a)). Let UBAfilli be an upper bound on the
area of the UBA that can be searched by a non-MCompmax

search resource i without increasing the MCompmax com-
pletion time. Assuming that each SRi searches at its maxi-
mum search rate Searchmaxi

, MCompmax is used along
with Searchmaxi

to determine UBAfilli (Figure 11(b)), which
is

UBAfilli = Searchmaxi
* (MCompmax $MCompi): ð7Þ

The remaining unassigned building area (UBArem) is
calculated by subtracting from the UBA the sum of
UBAfilli for all i. Next, for the purposes of the upper
bound calculation, it is assumed that the UBArem can be

Figure 11. (a) Example search resource completion time pmfs for a node with MComp0, MComp1, MCompmax, and fimp pulses
identified. (b) Example search resource completion time pmfs for a node with UBAfill0 and UBAfill1 identified.
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searched in parallel by all search resources and thus
expressed as

UBAend =UBArem=n: ð8Þ

Then a completion time pmf for SRi searching its share
of the UBArem, which is UBAend, is calculated for each
i using its search rate pmf. Each of these n completion
time pmfs (fremi

) is then separately convolved with an
impulse of probability 1 (f#imp ‘‘Figure 11a’’) located at
MCompmax that represents a shift of fremi

, which results in
the combined completion time pmf, fUBi

:

fUBi
= fimp * fremi

: ð9Þ

The fUBi
with the highest probability of completing prior

to the MDT is the upper bound (UB) for the node:

UB= max
8i

X

time≤MDT

fUBi

 !

: ð10Þ

6. RoPARS tool

The heuristics of the previous section are a component of
the RoPARS GUI tool, as shown in Figure 12. This tool
preprocesses the data and allows a user to visualize the lay-
out of a specific village and manipulate search resources
and constraints. The GUI allows the search area to be spec-
ified without tedious user action. The GUI handles the cre-
ation of village data files to be processed by the RoPARS
resource allocation engine. After an allocation is created
by the RoPARS tool, a user can review the plan by viewing

an animation that shows the search plan being conducted
at a user-selected speed.

The GUI represents a village by reading in a pair of
ESRI standard shapefiles that contain information on the
village’s road infrastructure and buildings. From these sha-
pefiles, many important pieces of data are derived. These
files allow the village to be graphically represented, as
shown in Figure 13.

The GUI allows the user to input the search constraints
(e.g. boundary lines, phase lines, target buildings) to define
the search problem. To define the resources available, the
user selects from three types of search resource teams:
human, MWD, and robot. As well as being able to select
the type of team, the user can edit certain descriptors of
the team, such as average search and movement rates.

After all the constraints for the search plan have been
input, the GUI creates three data files and sends this infor-
mation to the RoPARS resource allocation engine. These
files include road network, building, and search resource
data files. The road network adjacency file contains con-
nection and length data for all the road segments in the vil-
lage. A road segment is demarcated by two nodes. Nodes
occur where a road changes direction, at road intersections,
at the closest point to a target building, and every 200
meters if no other break has occurred. Every time a change
is made to the village (e.g. a new building is selected, a
phase/boundary line is added), the nodes are updated. The
building data file contains information about target building
locations, the road segment node connected to the build-
ings, and the target buildings’ areas. The search resource
data file contains information about the types of search
resources in the village, and both their movement rates and
search rates.

After the RoPARS resource allocation engine creates
the resource allocation, a file containing the search plan is
created and interpreted by the GUI. This file contains
information on the specific routes individual teams will
travel, the target buildings they will search, and the timing
data for each team. This information allows the GUI to
display an animation of the search plan. This animation is
played at a user-selected rate. A screen capture from the
RoPARS GUI33 in playback mode is shown in Figure 13.

7. Simulation results

The results discussed here consist of two different studies
that are both based upon three test village search scenarios
using five search resources (four human teams, one MWD
team). Mission constraints include one phase line and
one boundary line. Scenario 1 is based on the village in
Figure 13, with 30 target buildings and 66 road nodes.
Scenario 2 uses the same village, but with a different phase

Figure 12. Block diagram of the Robust People, Animals, and
Robots Search (RoPARS) tool software.
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line location, different boundary line location, and differ-
ent target buildings, resulting in 50 target buildings and 80
road nodes. Scenario 3 is based on a different village (not
shown), and has 24 target buildings and 64 road nodes.

To compare our heuristics, we used an expert solution
created by co-author Lieutenant Colonel Maxwell, who
has 19 years experience in the Army and has planned and
conducted village search missions. The expert solution
was created by hand using only the tools currently avail-
able to military planners. The expert solution uses the
same mean search rate and movement rate for all search
resources of the same type. This is necessary because spe-
cific information about the individual team rates does not
currently exist. To calculate the robustness of the expert
solution, we assume the search and movement rate pmfs
are Gaussian with the means based on values in current
Field Manuals and standard deviations of 12.5% of the
mean.

In Study 1, we compare the performance of the resource
allocations generated by our heuristics with the same team
search and movement rate means the expert assumes.
Firstly, each heuristic generated a single resource alloca-
tion using these team search and movement rates. Next,
using these resource allocations, 50 simulation trials were
conducted where the search resource movement rate and

search rate means differed (+ /–9% for search rate, + /–
4% for movement rate) from one trial to the next. This
shows how the SRM for the fixed allocations is perturbed
by changes in the search resource rates. Figure 14 shows
the stochastic robustness for our heuristics versus the
expert solution.

Study 2 focuses on the overall system we propose,
where we simulate having collected data about individual
teams’ search and movement rate pmfs. Here, search
resources possess unique pmfs. The simulated pmf data is
generated using the same 50 simulation trial data sets from
Study 1. The heuristics generate a new resource allocation
for each simulation trial using the search resources’ spe-
cific movement and search pmfs. Then, the SRM for the
resource allocation generated for each trial by a given
heuristic was evaluated.

The resource allocation of the expert remained fixed at
the one derived in Study 1, which matches current prac-
tice. That is, the expert uses just the mean values from the
Field Manuals. The expert does not use pmfs based on the
collected data to generate the resource allocation due to
the complexity of finding an optimal resource allocation in
a feasible amount of time using pmfs with non-automated
methods. This is in contrast to our proposed, new overall
system, where our computer-executed heuristics can deal

Figure 13. Robust People, Animals, and Robots Search (RoPARS) tool graphical user interface (GUI) screen capture of an example
resource allocation in playback mode with five search resources and their associated colored movement paths.
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with the complexity of: (1) different means among teams
of the same type; and (2) information provided by com-
plete pmfs. Thus, Study 1 shows how our heuristics com-
pare to an expert when given the same information, while
Study 2 shows how our heuristics, using improved infor-
mation, compare to the same expert.

The minimum search heuristic results are executed
using 100 different groups of random building starting
location assignments per trial. We conducted experiments
with a varying number of random starting locations and
found that the solution quality grows less than linearly
with an increasing number of starting locations. Thus, the
number of starting locations was chosen based upon sce-
nario size and result quality.

Experiments for the VSGA were conducted varying the
probability of crossover and probability of mutation to
determine the effect on the SRM. These tests indicated that
a crossover probability of 0.8 and a mutation probability
of 0.05 gave the best robustness. Finally, the stopping con-
ditions for the genetic algorithm were set to 1500 total
generations or 350 generations with no change in the best
solution. Experiments with larger number of generations
did not show a significant improvement. Elitism was used
to ensure that the best solution was kept in the population
across generations.

The VSVB heuristic was tested using an initial beam
width of 10 with the beam width incrementing by five in
each level of the tree until a maximum width of 80 was

reached. Even with this relatively small beam width, the
execution time of the heuristic for scenario 2 was over 36
hours. By comparison, for the same scenario, the VSGA
executed in 6 minutes and the minimum search heuristic
executed in 10 minutes.

The results of Study 1 are shown in Figure 14. On aver-
age, the quality of the solutions produced by the VSGA
was better than the other approaches. The scenario average
of the VSGA was 61% better than the expert average,
while the VSVB was 52% better, and minimum search
was 24% better. For larger village search scenarios, the
length of time to calculate an expert solution will increase
and its quality will most likely decrease, as shown by our
results in Figures 14 and 15. This makes using even a sim-
ple heuristic such as minimum search valuable.

The average improvement in the stochastic robustness
versus the expert allocation for Study 2 is shown in
Figure 15. The average over scenarios of the VSVB was
83% better than the expert average, while the VSGA was
73% better and minimum search was 30% better.

The expert solution performed well in scenario 2, which
is the scenario with the smallest road network but densest
target building concentration. As the scenarios increased
in complexity (i.e. building density decreases or road net-
work size increases), the expert solution quality decreased.
Obviously, the quality of the expert solution will vary
greatly depending on the experience and expertise of the
planner.

Figure 14. Study 1 average heuristic stochastic robustness for minimum search allocation, village search genetic algorithm (VSGA)
allocation, village search variable beam (VSVB) allocation, and expert allocation using a single Gaussian probability mass function
(pmf) for search and movement rates for each resource type. Error bars show a 95% confidence interval.
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The minimum search heuristic is a greedy heuristic and
does not account for the long-term impact of its choices.
This results in allocations that are relatively non-robust.
The random starting location aspect of the heuristic does
create the potential for better performance than we report
here, but it comes at the cost of longer run times.

Finally, the VSGA heuristic was compared to a non-
indexed VSGA heuristic that did not use index representa-
tions for SRs. In this non-indexed version, it becomes nec-
essary to examine each possible combination of SRs within
the selected boundary assignment grouping separately.
This is required to prevent the generation of illegal chro-
mosomes during crossover and mutation operations. The
non-indexed VSGA’s SRM was on average less than 1%
better than the VSGA’s SRM at the cost of a factor of 10
increase in the average heuristic execution time.

8. Conclusions

Determining resource allocations for military village
search problems is a complex problem. Current solutions
produced by planning officers are time consuming and of
unquantifiable quality. We have presented the RoPARS
tool for village search planning as a way of addressing
these issues along with three heuristics for use in its
resource allocation engine. The heuristics demonstrate that
computer tools can create solutions for these problems and

do so in a manner that is robust against uncertainty in the
environment. This can save military planners time and
resources during the planning process and improve the
quality of the resulting plan.

Future work in this area includes increasing the size of
the test scenarios in terms of target buildings and number
of search teams. Work also can be done to determine the
best locations for phase lines and boundary lines, given a
set of target buildings and search resources. In addition,
research is needed to develop heuristics that can quickly
and dynamically re-evaluate the resource allocation plan
should conditions change from those used during static
resource allocation.
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