
Dynamic Resource Management Heuristics for Minimizing Makespan while
Maintaining an Acceptable Level of Robustness in an Uncertain Environment

Ashish M. Mehta*, Jay Smith†, H. J. Siegel*‡, Anthony A. Maciejewski*, Arun Jayaseelan*, and Bin Ye*

*Electrical and Computer Engineering Department
‡Computer Science Department

Colorado State University, Fort Collins, CO 80523–1373
Email: {ammehta, hj, aam, arunj}@engr.colostate.edu, binye@simla.colostate.edu

†IBM 6300 Diagonal Highway Boulder, CO 80301
Email: bigfun@us.ibm.com

Abstract

Heterogeneous parallel and distributed computing sys-
tems may operate in an environment where certain system
performance features degrade due to unpredictable circum-
stances. Robustness can be defined as the degree to which a
system can function correctly in the presence of parameter
values different from those assumed. This paper presents
a mathematical model for quantifying robustness in a dy-
namic environment where task execution times estimates are
known to contain errors. This research proposes, evaluates,
and compares ten different dynamic heuristics for their abil-
ity to maintain or maximize the proposed dynamic robust-
ness metric in an uncertain environment. In addition, the
makespan results of the proposed heuristics are compared
to a lower bound.

1. Introduction

Heterogeneous parallel and distributed computing is the

coordinated use of various compute resources of different

capabilities to optimize certain system performance fea-

tures. An important research problem (i.e., resource man-

agement) is how to determine a resource allocation and

scheduling of tasks to machines (i.e., a mapping) that op-

timizes a system performance feature while maintaining an

acceptable level of quality of service. This research focuses

on a dynamic mapping environment where task arrival times

∗This research was supported by the DARPA Information Exploitation

Office under contract No. NBCHC030137, by the Colorado State Uni-

versity Center for Robustness in Computer Systems (funded by the Col-

orado Commission on Higher Education Technology Advancement Group

through the Colorado Institute of Technology), and by the Colorado State

University George T. Abell Endowment. Approved for public release, dis-

tribution unlimited.

are not known a priori. A mapping environment is consid-

ered dynamic when tasks are mapped as they arrive, e.g.,

in an on-line fashion [20]. The general problem of opti-

mally mapping tasks to machines (resource management) in

heterogeneous parallel and distributed computing environ-

ments has been shown in general to be NP-complete (e.g.,

[10, 14, 16]). Thus, the development of heuristic techniques

to find a near-optimal solution for the mapping problem is

an active area of research (e.g., [1,4,5,13,15,18,20,21,26]).

Dynamic mapping heuristics can be grouped into two

categories: immediate mode and batch mode [20]. In

immediate mode, when a task arrives (i.e., a mapping event)

it is immediately mapped to some machine in the suite

for execution. In batch mode, tasks are accumulated un-

til a specified condition is satisfied (e.g., a certain num-

ber of tasks have accumulated, or some amount of time

has elapsed); whereupon the entire batch of accumulated

tasks and the previously enqueued but not executing tasks

are considered for mapping. A pseudo-batch mode can be

defined where the batch of tasks considered for mapping is

determined upon the arrival of a new task (i.e., a mapping

event) and consisting of all tasks in the parallel and dis-

tributed system that have not yet begun execution on some

machine. Both immediate mode and pseudo-batch mode

heuristics were considered for this research.

Heterogeneous parallel and distributed systems may op-

erate in an environment where certain system performance

features degrade due to unpredictable circumstances and in-

accuracies in estimated system parameters. Robustness is

defined as the degree to which a system can function cor-

rectly in the presence of parameters different from those as-

sumed [2]. For a given set of tasks, the makespan is defined

as the completion time for the entire set of tasks. For this

research, makespan is required to be robust against errors

in the estimated execution time of each task. For a given

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

application domain, the estimated time to compute (ETC)

each task i on each machine j is assumed known, denoted

ETC(i, j). However, these estimates may deviate from the

actual computation times; e.g., the actual times may de-

pend on characteristics of the input data to be processed.

The tasks considered in this research are taken from a fre-

quently executed predefined set, such as exists in a lab or

business environment. This research focuses on determin-

ing a dynamic mapping for a set of tasks that minimizes the

predicted makespan (using the provided ETC values) while

still being able to tolerate a quantifiable amount of variation

in the ETC values of the mapped tasks. Hence, the goal is to

obtain a mapping that has the minimum makespan and can

still guarantee a certain level of robustness at each mapping

event.

One of the areas where this work is directly applicable

is the development of resource allocations in enterprise sys-

tems that support transactional workloads sensitive to re-

sponse time constraints, e.g., time sensitive business pro-

cesses [22]. Often, the service provider in these types

of systems is contractually bound through a service level

agreement to deliver on promised performance. The dy-

namic robustness metric can be used to measure a resource

allocation’s ability to deliver on a performance agreement.

The contributions of this paper include:

• a model for quantifying dynamic (as opposed to static)

robustness in this environment,

• heuristics for solving the above resource management

problem,

• simulation results for the proposed heuristics, and

• an lower bound on the total makespan for the resource

management problem.

The remainder of the paper is organized as follows. Sec-

tion 2 formally states the problem statement for this re-

search. Section 3 briefly discusses the heuristics studied

in this research including the definition of a lower bound

on the total makespan of the mapping problem. Section 4

outlines the simulation setup. The simulation results are

presented and discussed in Section 5. The related work is

considered in Section 6 and Section 7 concludes the paper.

2. Problem Statement

In this study, T independent tasks (i.e., there is no inter-

task communication) arrive at a mapper dynamically, where

the arrival times of the individual tasks are not known in

advance. For example - these independent tasks may have

been generated by different users. Arriving tasks are each

mapped to one machine in the set of M machines that com-

prise the heterogeneous computing system. Each machine

is assumed to execute a single task at a time (i.e., no multi-

tasking). In this environment, the robustness of a resource

allocation must be determined at every mapping event—

recall that a mapping event occurs when a new task arrives

to the system. Let T (t) be the set of tasks either currently

executing or pending execution on any machine at time t,
i.e., T (t) does not include tasks that have already completed

execution. Let Fj(t) be the predicted finishing time of ma-

chine j for a given resource allocation μ based on the given

ETC values. Let MQj(t) denote the subset of T (t) previ-

ously mapped to machine j’s queue and let scetj(t) denote

the starting time of the currently executing task on machine

j. Mathematically, given some machine j

Fj(t) = scetj(t) +
∑

∀i∈MQj(t)

ETC(i, j). (1)

Let β(t) denote the maximum of the finishing times

Fj(t) for all machines at time t—i.e., the predicted

makespan at time t. Mathematically,

β(t) = max
∀j∈[1,M]

{Fj(t)}. (2)

The robustness metric for this work has been derived

using the procedure defined in [2]. In our current study,

given uncertainties in the ETC values, a resource alloca-

tion is considered robust if, at a mapping event, the actual
makespan is no more than τ seconds greater than the pre-
dicted makespan. Thus, given a resource allocation μ, the

robustness radius rμ(Fj(t)) of machine j can be quantita-

tively defined as the maximum collective error in the esti-

mated task computation times that can occur where the ac-

tual makespan will be within τ time units of the predicted

makespan. Mathematically, building on a result in [2],

rμ(Fj(t)) =
τ + β(t) − Fj(t)√|MQj(t)|

. (3)

The robustness metric ρμ(t) for a given mapping μ is simply

the minimum of the robustness radii over all machines [2].

Mathematically,

ρμ(t) = min
∀j∈[1,M]

{
rμ

(
Fj(t)

)}
. (4)

With the robustness metric defined in this way, ρμ(t) cor-

responds to the collective deviation from assumed circum-

stances (relevant ETC values) that the resource allocation

can tolerate and still ensure that system performance will

be acceptable (the actual makespan is within τ of the pre-

dicted).

To define the dynamic robustness metric as a constraint

let α be the minimum acceptable robustness of a resource

allocation at any mapping event; i.e., the constraint requires

that the robustness metric at each mapping event be at least

α. Thus, the goal of the heuristics in this research is to

dynamically map incoming tasks to machines such that the

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

total makespan is minimized, while maintaining a robust-

ness of at least α i.e., ρμ(t) ≥ α for all mapping events.

The larger α is, the more robust the resource allocation is.

3. Heuristics

3.1. Overview

Five immediate mode and five pseudo-batch mode

heuristics were studied for this research. For the task under

consideration, a feasible machine is defined to be a machine

that will satisfy the robustness constraint if the considered

task is assigned to it. This subset of machines is referred to

as the feasible set of machines.

3.2. Immediate Mode Heuristics

The following is a brief description of the immediate

mode heuristics. Recall that in the immediate mode of

heuristics, only the new incoming task is considered while

making a mapping decision. Thus, the behavior of the

heuristic is highly influenced by the order in which the

tasks arrive.

3.2.1. Feasible Robustness Minimum Execution
Time (FRMET). FRMET is based on the MET concept

in [20, 27]. For each incoming task, FRMET first identifies

the feasible set of machines. From the feasible set of

machines the incoming task is assigned to its minimum

execution time machine.

3.2.2. Feasible Robustness Minimum Completion
Time (FRMCT). FRMCT is based on the MCT concept

in [8, 20, 27]. For each incoming task, FRMCT first

identifies the feasible set of machines for the incoming

task. From the feasible set of machines the incoming task

is assigned to its minimum completion time machine.

3.2.3. Feasible Robustness K-Percent Best (FRKPB).
FRKPB is based on the KPB concept in [17, 20]. It tries

to combine the aspects of both MET and MCT. FRKPB

first finds the feasible set of machines for the newly arrived

task. From this set, FRKPB identifies the k-percent feasible

machines that have the smallest execution time for the task.

The task is then assigned to the machine in the set with

the minimum completion time for the task. For a given α
the value of k was varied between 0 and 100, in steps of

12.5, for sample training data to determine the value that

provided the minimum makespan. A value of k = 50 was

found to give the best results.

3.2.4. Feasible Robustness Switching (FRSW). FRSW

is based on the SW concept in [17, 20]. As applied in this

research, FRSW combines aspects of both the FRMET

and the FRMCT heuristics. A load balance ratio (LBR)

is defined to be the ratio of the minimum number of tasks

enqueued on any machine to the maximum number of tasks

enqueued on any machine. The LBR can have any value in

the interval[1,0]. Two threshold points Thigh and Tlow are

chosen for the ratio LBR such that Thigh > Tlow. FRSW

then switches between FRMET and FRMCT based on the

value of the load balance ratio. The heuristic starts by

mapping tasks using FRMCT. When the ratio raises above

the set point Thigh FRSW switches to the FRMET heuristic.

When the ratio falls below Tlow FRSW switches to the

FRMCT heuristic. The values for the switching set points

were determined experimentally using sample training data.

3.2.5. Maximum Robustness (MaxRobust). MaxRo-

bust has been implemented for comparison only, try-

ing to greedily maximize robustness without considering

makespan. MaxRobust calculates the robustness radius of

each machine for the newly arrived task, assigning the task

to the machine with the maximum robustness radius.

3.3. Pseudo-Batch Heuristics

The pseudo-batch mode heuristics implement two

sub-heuristics, one to map the task as it arrives, and a

second to remap pending tasks. For the pseudo-batch

mode heuristics, the initial mapping is performed by the

previously described FRMCT heuristic (except for the

MRMR heuristic). The remapping heuristics each operate

on a set of mappable tasks; a mappable task is defined as

any task pending execution that is not next in line to begin

execution. To avoid idle machines in the system caused by

waiting for a heuristic to complete a mapping event, a task

that is next in line to begin execution on any machine will

not be considered for mapping at a mapping event. While it

is still possible that a machine may become idle, it is highly

unlikely for the assumptions in this research (the average

execution time of a task is 100 seconds while the average

execution time of a mapping event is less than 0.6 seconds).

The following is a brief description of the pseudo-batch

mode re-mapping heuristics.

3.3.1. Feasible Robustness Minimum Completion
Time-Minimum Completion Time (FMCTMCT).
FMCTMCT uses a variant of Min-Min heuristic defined

in [16]. For each mappable task, FMCTMCT finds the

feasible set of machines, then from this set determines

the machine that provides the minimum completion time

for the task. From these task/machine pairs, the pair that

gives the overall minimum completion time is selected and

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

that task is mapped onto that machine. This procedure

is repeated until all of the mappable tasks have been

remapped.

3.3.2. Feasible Robustness Maximum Robustness-
Minimum Completion Time (FMRMCT). FMRMCT

builds on concept of the Max-Min heuristic [16]. For each

mappable task, FMRMCT first identifies the feasible set

of machines, then from this set determines the machine

that provides the minimum completion time. From these

task/machine pairs, the pair that provides the maximum

robustness radius is selected and the task is assigned to

that machine. This procedure is repeated until all of the

mappable tasks have been remapped.

3.3.3. Feasible Minimum Completion Time-
Maximum Robustness (FMCTMR). For each mappable

task, FMCTMR first identifies the feasible set of machines,

then from this set determines the machine with the max-

imum robustness radius. From these task/machine pairs,

the pair that provides the minimum completion time is

selected and the task is mapped to that machine. This

procedure is repeated until all of the mappable tasks have

been remapped.

3.3.4. Maximum Weighted Sum-Maximum Weighted
Sum (MWMW). MWMW builds on a concept in [24]. It

combines the Lagrangian heuristic technique [9, 19] for de-

riving an objective function with the concept of Min-Min

heuristic [16] here to simultaneously minimize makespan

and maximize robustness. For each mappable task, the fea-

sible set of machines is identified and the machine in this

set that gives the maximum value of the objective func-

tion (defined below) is determined. From this collection

of task/machine pairs, the pair that provides the maximum

value of the objective function is selected and the corre-

sponding assignment is made. This procedure is repeated

until all of the mappable tasks have been remapped.

When considering assigning a task i to machine j, let

F ′
j(t) = Fj(t) +

∑
ETC(i, j) for all tasks currently in the

machine queue and the task currently under consideration.

Let β′(t) be maximum of the finishing times F ′
j(t) at time t

for all machines. Let r′μ(F ′
j(t)) be the robustness radius for

machine j. Let maxrob(t) be the maximum of the robustness

radii at time t. Given η , an experimentally determined con-

stant using training data, the objective function for MWMW

is defined as

s(j, t) = η

(
1 − F ′

j(t)
β′(t)

)
+ (1 − η)

(
r′μ(F ′

j(t))
maxrob(t)

)
(5)

3.3.5. Maximum Robustness-Maximum Robustness
(MRMR). MRMR is provided here for comparison only

as it optimizes robustness without considering makespan.

As a task arrives it is initially mapped using the MaxRo-

bust heuristic. Task remapping is performed by a variant

of the Max-Max heuristic [16]. For each mappable task,

the machine that provides the maximum robustness radius

is determined. From these task/machine pairs, the pair that

provides the maximum overall robustness radius is selected

and the task is mapped to that machine. This procedure

is then repeated until all of the mappable tasks have been

remapped.

3.4. Lower Bound (lb)

A lower bound on makespan for the described system

can be found by identifying the task whose arrival time plus

minimum execution time on any machine is the greatest.

More formally, given the entire set of tasks S where each

task i has an arrival time of arv(i), the lower bound is given

by

lb = max
∀i∈S

(
(arv(i) + min

∀j∈[1,M]
ETC(i, j)

)
. (6)

This is a lower bound on makespan. Thus, no heuristic

can achieve a smaller makespan. However, it is possible

that this lower bound is not achievable even by an optimal

mapping.

4. Simulation Setup

The simulated environment consists of T = 1024 inde-

pendent tasks and M = 8 machines. This number of tasks

and machines was chosen to present a significant mapping

challenge for each heuristic and to prevent an exhaustive

search for an optimal solution (however, our techniques can

be applied to different numbers of tasks and machines).

As stated earlier, each task arrives dynamically and arrival

times are not known a priori. For this study, 100 differ-

ent ETC matrices were generated, 50 with high task het-

erogeneity and high machine heterogeneity (HIHI) and 50

with low task heterogeneity and low machine heterogeneity

(LOLO) ([8]). The LOLO ETC matrices model an environ-

ment where different tasks have similar execution times on

a machine and also the machines have similar capabilities,

e.g., a cluster of workstations employed to support trans-

actional data processing. In contrast, the HIHI ETC ma-

trices model an environment where the computational re-

quirements of tasks vary greatly and there is a set of ma-

chines with diverse capabilities, e.g., a computational grid

comprising of SMPs, workstations, and supercomputers.

All of the ETC matrices generated were inconsistent

(i.e., machine A being faster than machine B for task 1 does

not imply machine A is faster than machine B for task 2) [8].

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

All ETC matrices were generated using the gamma distri-

bution method presented in [3]. The arrival time of each

task was generated according to a Poisson distribution with

a mean task inter-arrival rate of eight seconds.

In the gamma distribution method of [3], a mean task ex-

ecution time and coefficient of variation (COV) are used to

generate the ETC matrices. In the high-high case, the mean

task execution time was set to 100 seconds and a COV of 0.9

was used for both the task and the machine heterogeneity.

The low-low heterogeneity case uses a mean task execution

time of 100 seconds and a COV of 0.3 for task heterogeneity

and a COV of 0.3 for machine heterogeneity.

The value of τ chosen for this study was 120 seconds.

The performance of each heuristic was studied across all

100 different trials (ETC matrices).

5. Results

In Figures 1 through 4, the average makespan results

(with 95% confidence interval bars) are plotted, along with

a lower bound on makespan. Figures 1 and 2 present the

makespan results for the immediate mode heuristics for

HIHI and LOLO heterogeneity, respectively. While, Fig-

ures 3 and 4 present the makespan results for the pseudo-

batch mode heuristics for HIHI and LOLO heterogeneity,

respectively. Each of the heuristics was simulated using

multiple values for the robustness constraint α. For each α
the performance of the heuristics was observed for 50 HIHI

and 50 LOLO heterogeneity trials. In Figures 1 and 2, the

number of failed trials (out of 50) is indicated above the

makespan results for each heuristic, i.e., the number of tri-

als for which the heuristic was unable to successfully find a

mapping for every task given the robustness constraint α.

The average execution time of each heuristic over all

mapping events (on a typical unloaded 3GHz Intel Pentium

4 desktop machine) in all 100 trials are shown in Table 1

and Table 2 for immediate and pseudo-batch mode, respec-

tively. For the immediate mode heuristics, this is the aver-

age time for a heuristic to map an incoming task. For the

pseudo-batch mode heuristics, this is the average time for a

heuristic to map an entire batch of tasks.

For the immediate mode heuristics, FRMET resulted in

the lowest makespan for HIHI, and FRMET and FRSW per-

formed the best for LOLO. The immediate mode FRMET

heuristic for both HIHI and LOLO heterogeneity performed

better than anticipated given prior studies including a mini-

mum execution time (MET) heuristic in other environment

(that do no involve robustness and had different arrival rates

and ETC matrices).

It has been shown, in general, that the minimum exe-

cution time heuristic is not a good choice for minimizing

makespan for both the static and dynamic environments

[8,20], because it ignores machine loads and machine avail-

2000

4000

6000

8000

10000

12000

14000

16000

22.00 24.00 25.00 26.00 27.00 29.10

robustness constraint ()

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust LowerBound

0

0
0

0

000
2

2

0
0

0

1

0 0
0

5

0
21

Figure 1. Simulation results of makespan for
different values of robustness constraint (α)
for immediate mode heuristics for HIHI het-
erogeneity.

able times when making a mapping decision. The establish-

ment of a feasible set of machines by the FRMET heuristic

indirectly balances the incoming task load across all of the

machines (i.e., incorporates some sense of machine loads).

Also, because of the highly inconsistent nature of the data

sets coupled with the high mean execution time (100 sec-

onds), FRMET is able to maintain a lower makespan com-

pared to FRMCT.

Table 3 shows the maximum and average number of

mapping events (out of a possible 1024) over successful tri-

als (out of 50) for which the MET machine was not feasible.

That is, the table values were calculated based on only the

subset of the 50 trials for which FRMET could determine

a mapping that met the constraint. For each of these trials,

there were 1024 mapping events. Thus, even though the

vast majority of tasks are mapped to their MET machine,

it is important to prevent those rare cases where doing so

would make the mapping infeasible.

The FRKPB heuristic performed better than FRMCT (in

terms of makespan) for LOLO heterogeneity and compara-

ble to FRMCT for HIHI heterogeneity. FRKPB selects the

k-percent feasible machines that have the smallest execution
time for the task and then assigns the task to the machine

in the set with the minimum completion time for the task.

Thus, rather then trying to map the task to its best comple-

tion time machine, it tries to avoid putting the current task

onto the machine which might be more suitable for some

yet to arrive task. This foresight about task heterogeneity is

missing in FRMCT, which might assign the task to a poorly

matched machine for an immediate marginal improvement

in completion time. This might possibly deprive some sub-

sequently arriving better matched tasks of that machine, and

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

7000

8000

9000

10000

11000

12000

13000

18.00 19.00 20.00 21.00 21.21 23.00
robustness constraint ()

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust LowerBound

 0 0
 0

 0

 0 0

0
0

0

0

20

0 0

3

5

00

0

3

13

Figure 2. Simulation results of makespan for
different values of robustness constraint (α)
for immediate mode heuristics for LOLO het-
erogeneity.

Table 1. Average execution times, in seconds,
of a mapping event for the proposed immedi-
ate mode heuristics.

heuristic average execution time (sec.)

FRMET 0.001

FRMCT 0.0019

FRKPB 0.0019

FRSW 0.0015

MaxRobust 0.0059

eventually leading to a larger makespan than FRKPB.

An interesting observation was that the FRMCT heuris-

tic was able to mantain a robustness constraint of α = 27
for the 50 trials used in this study, but only for 48 trials for

α = 26 (for HIHI heterogeneity). This could be attributed

to the volatile nature of the greedy heuristics. The looser

robustness constraint (α = 26) allowed for a paring of task

to machine that was disallowed for a tighter robustness con-

straint (α = 27). That is, the early greedy selection proved

to be a poor decision because it ultimately led to a mapping

failure.

The MWMW heuristic used a value of η = 0.7 for HIHI

and η = 0.6 for LOLO. Among the pseudo-batch mode

heuristics, for the HIHI heterogeneity trials, FMRMCT per-

formed the best on average, while FMCTMCT gave com-

parable results. For the LOLO heterogeneity trials, all of

the heuristics performed comparably. As can be seen from

figures 3 and 4, the MRMR heuristic was able to maintain a

5000.00

7000.00

9000.00

11000.00

13000.00

22 24 26 30 36.18

robustness constraint ()

m
ak

es
pa

n

FMCTMCT FMRMCT FMCTMR MWMW MRMR Lower Bound

Figure 3. Simulation results of makespan for
different values of robustness constraint (α)
for pseudo-batch mode heuristics for HIHI
heterogeneity.

Table 2. Average execution times, in seconds,
of a mapping event for the proposed pseudo-
batch mode heuristics.

heuristic average execution time (sec.)

FMCTMCT 0.023

FMRMCT 0.028

FMCTMR 0.028

MWMW 0.0211

MRMR 0.0563

high level of robustness. But consequently, it even had the

worst makespan among the heuristics studied.

6. Related Work

The research presented in this paper was designed using

the four step FePIA procedure described in [2]. A number

of papers in the literature have studied robustness in dis-

tributed systems (e.g., [6, 11, 23, 25]).

The research in [6] considers rescheduling of operations

with release dates using multiple resources when disrup-

tions prevent the use of a preplanned schedule. The over-

all strategy is to follow a preplanned schedule until a dis-

ruption occurs. After a disruption, part of the schedule is

reconstructed to match up with the pre-planned schedule at

some future time. Our work considers a slightly different

environment where task arrivals are not known in advance.

Consequently, in our work it was not possible to generate a

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

11000.00

20 23 24 28.28

robustness constraint ()

m
ak

es
pa

n

FMCTMCT FMRMCT FMCTMR MWMW MRMR LowerBound

Figure 4. Simulation results of makespan for
different values of robustness constraint (α)
for pseudo-batch mode heuristics for LOLO
heterogeneity.

preplanned schedule.

The research in [11] considers a single machine schedul-

ing environment where processing times of individual jobs

are uncertain. Given the probabilistic information about

processing times for each job, the authors in [11] determine

a normal distribution that approximates the flow time asso-

ciated with a given schedule. The risk value for a schedule

is calculated by using the approximate distribution of flow

time (i.e., the sum of the completion times of all jobs). The

robustness of a schedule is then given by one minus the risk

of achieving sub-standard flow time performance. In our

work, no such stochastic specification of the uncertainties

is assumed.

The study in [23] defines a robust schedule in terms

of identifying a Partial Order Schedule (POS). A POS is

defined as a set of solutions for the scheduling problem

that can be compactly represented within a temporal graph.

However, the study considers the Resource Constrained

Project Scheduling Problem with minimum and maximum

time lags, (RCPSP/max), as a reference, which is a different

problem domain from the environment considered here.

In [25], the robustness is derived using the same FePIA

procedure used here. However the environment considered

is static (off-line), as opposed to the dynamic (on-line) envi-

ronment in this research. The robustness metric and heuris-

tics employed in a dynamic environment are substantially

different from those employed in [25].

7. Conclusions

This research established a method for quantifying the

robustness of a resource allocation in a dynamic environ-

Table 3. Maximum and average number of
mapping events (over successful trials) for
which the MET machine was not feasible for
HIHI and LOLO heterogeneity.

HIHI

Robustness constraint(α) maximum average

22.00 41 14

24.00 54 22

25.00 73 30

26.00 79 36

27.00 88 42

LOLO

Robustness constraint(α) maximum average

18.00 5 0

19.00 10 1

20.00 14 3

21.00 26 6

21.21 26 6

23.00 56 17

ment. Ten different heuristics were designed, developed,

and simulated for the presented parallel and distributed en-

vironment. FRMET performed the best among the imme-

diate mode heuristics, while FMRMCT performed the best

(on average) among the pseudo-batch mode heuristics. A

theoretical lower bound on the makespan of the resource al-

location was also developed. The immediate mode heuris-

tics described here can be used when the individual guaran-

tee for the submitted jobs is to be maintained (as there is no

reordering of the submitted jobs), while the pseudo-batch

heuristics can be used when the overall system performance

is of importance.

References

[1] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J.

Siegel, A. A. Maciejewski, and V. Prasanna, “Utilization-

based techniques for statically mapping heterogeneous ap-

plications onto the HiPer-D heterogeneous computing sys-

tem,” Parallel and Distributed Computing Practices, Special

Issue on Parallel Numerical Algorithms on Faster Comput-

ers, Vol. 5, No. 4, Dec. 2002.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,

“Measuring the robustness of a resource allocation,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15,

No. 7, July 2004, pp. 630-641.

[3] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali,

“Representing task and machine heterogeneities for hetero-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

geneous computing systems,” Tamkang Journal of Science
and Engineering, Special 50th Anniversary Issue, Vol. 3,

No. 3, Nov. 2000, pp. 195-207 (invited).

[4] H. Barada, S. M. Sait, and N. Baig, “Task matching and

scheduling in heterogeneous systems using simulated evo-

lution,” 10th IEEE Heterogeneous Computing Workshop

(HCW 2001), 15th International Parallel and Distributed
Processing Symposium (IPDPS 2001), Apr. 2001.

[5] I. Banicescu and V. Velusamy, “Performance of schedul-

ing scientific applications with adaptive weighted factoring,”

10th IEEE Heterogeneous Computing Workshop (HCW
2001), 15th International Parallel and Distributed Process-

ing Symposium (IPDPS 2001), Apr. 2001.

[6] J. Bean, J. Birge, J. Mittenthal, C. Noon, “Matchup schedul-

ing with multiple resources, release dates and disruptions,”

Journal of the Operations Research Society of America, Vol.

39, No. 3, June. 1991, pp. 470-483.

[7] W. F. Boyer and G.S. Hura, “Dynamic scheduling in dis-

tributed heterogeneous systems with dependent tasks and

imprecise execution time estimates,” 16th IASTED Inter-
national Conference on Parallel and Distributed Computing
and Systems (PDCS 2004), Nov. 2004.

[8] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund,

D. Hensgen, M. Maheswaran, A. I. Reuther, J. P. Robertson,

M. D. Theys, and Bin Yao, “A comparison of eleven static

heuristics for mapping a class of independent tasks onto het-

erogeneous distributed computing systems,” Journal of Par-
allel and Distributed Computing, Vol. 61, No. 6, June 2001,

pp. 810-837.

[9] R. Castain, W. W. Saylor, and H. J. Siegel, “Application

of lagrangian receding horizon techniques to resource man-

agement in ad-hoc grid environments,” 13th Heterogeneous
Computing Workshop (HCW 2004), in the proceedings of

the 18th International Parallel and Distributed Processing

Symposium (IPDPS 2004), Apr. 2004.

[10] E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling
Theory, John Wiley & Sons, New York, NY, 1976.

[11] R. L. Daniels and J. E. Carrilo, “β-Robust scheduling for

single-machine systems with uncertain processing times,”

IIE Transactions, Vol. 29, No. 11, Nov. 1997, pp. 977-985.

[12] J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive schedul-

ing: Improving the robustness of schedules and restricting

the effects of shop floor disturbances by fuzzy reasoning,”

International Journal on Human-Computer Studies, Vol. 42,

No. 6, June 1995, pp. 687-704.

[13] M. M. Eshaghian, ed., Heterogeneous Computing, Nor-

wood, MA, Artech House, 1996.

[14] D. Fernandez-Baca, “Allocating modules to processors in

a distributed system,” IEEE Transaction on Software Engi-
neering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427-1436.

[15] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a
New Computing Infrastructure, San Fransisco, CA, Morgan

Kaufmann, 1999.

[16] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for

scheduling independent tasks on non-identical processors,”

Journal of the ACM, Vol. 24, No. 2, Apr. 1977, pp. 280-289.

[17] J. -K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T.

Braun, M. Schneider, S. Tideman, R. Chitta, R. B. Dil-

maghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Van-

gari, and S. S. Yellampalli, “Dynamic mapping in a het-

erogeneous environment with tasks having priorities and

multiple deadlines,” 12th IEEE Heterogeneous Computing
Workshop (HCW 2003), 17th International Parallel and Dis-

tributed Processing Symposium (IPDPS 2003), Apr. 2003.

[18] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness mea-

sures and robust scheduling for job shops,” IIE Transactions,

Vol. 26, No. 5, Sep. 1994, pp. 32-43.

[19] P. Luh, X. Zhao, Y. Wang, and L. Thakur, “Lagrangian relax-

ation neural networks for job shop scheduling,” IEEE Trans-
actions on Robotics and Automation, Vol. 16, No. 1, Feb.

2000, pp. 78-88.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.

Freund, “Dynamic mapping of a class of independent tasks

onto heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, Vol. 59, No. 2, Nov. 1999, pp.

107-121.

[21] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern
Heuristics, New York, NY, Springer-Verlag, 2000.

[22] V. K. Naik, S. Sivasubramanian, D. Bantz, and S. Krish-

nan,“Harmony: A desktop grid for delivering enterprise

computations,” 4th International Workshop on Grid Com-
puting (GRID 03), Nov. 2003.

[23] N. Policella, Scheduling with uncertainty, A proactive ap-
proach using partial order schedules, PhD thesis, Diparti-

mento di Informatica e Sistemistica “Antonio Ruberti” Uni-

versit‘a degli Studi di Roma “La Sapienza,” 2005.

[24] S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam,

T. Banka, R. Castain, K. Chindam, S. Dussinger, P. Pichu-

mani, P. Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.

Sridharan, and J. Velazco, “Static allocation of resources to

communicating subtasks in a heterogeneous ad hoc grid en-

vironment,” Journal of Parallel and Distributed Computing,

Special Issue on Algorithms for Wireless and Ad-hoc Net-

works, Vol. 66, No. 4, pp. 600-611, Apr. 2006.

[25] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar,

A. Mehta, R. Pichel, A. Horiuchi, V. Shestak, M. Al-Otaibi,

Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin, P. Lee, K.

Guru, M. Raskey, and A. Pippin, “Robust static allocation of

resources for independent tasks under makespan and dollar

cost constraints,” Journal of Parallel and Distributed Com-
puting, accepted, to appear.

[26] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A

static mapping algorithm for meta-tasks on heterogeneous

computing systems,” 9th IEEE Heterogeneous Computing
Workshop (HCW 2000), May 2000, pp. 375-385.

[27] V. Yarmolenko, J. Duato, D. K. Panda, P. Sadayappan,

“Characterization and enhancement of dynamic mapping

heuristics for heterogeneous systems,” International Confer-
ence on Parallel Processing Workshops (ICPPW 00), Aug.

2000, pp. 437-444.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

