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Abstract— Heterogeneous parallel and distributed computing

systems may operate in an environment where certain system

performance features degrade due to unpredictable circumstances.

Robustness can be defined as the degree to which a system can

function correctly in the presence of parameter values different

from those assumed. This work uses a mathematic expression of

robustness for a dynamic environment where task execution time

estimates are known to contain errors. Several heuristic solutions to

the problem are presented that utilize this expression of robustness

to influence mapping decisions. These solutions are then compared

to a bound on the highest attainable robustness of the described

system.
Index Terms— robustness, resource allocation, makespan, dy-

namic heuristics.

I. INTRODUCTION

Heterogeneous parallel and distributed computing is defined
as the coordinated use of compute resources that have different
capabilities to optimize certain system performance features.
Heterogeneous systems may operate in an environment where
certain system performance features degrade due to unpre-
dictable circumstances or inaccuracies in estimated system
parameters. Robustness can be defined as the degree to which
a system can function correctly in the presence of parameter
values different from those assumed [3]. An important research
problem in resource management is how to determine an
assignment of tasks to machines and scheduling of tasks (i.e., a
mapping or resource allocation) that maximizes the robustness
of a system performance feature against perturbations in
system parameters.

This research focuses on a dynamic heterogeneous mapping
environment where task arrival times are not known a priori.
A mapping environment is considered dynamic when tasks
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are mapped as they arrive, i.e., in an on-line fashion [20].
The general problem of optimally mapping tasks to machines
in heterogeneous parallel and distributed computing environ-
ments has been shown in general to be NP-complete (e.g.,
[7], [10], [14]). Thus, the development of heuristic techniques
to find a near-optimal solution for the mapping problem is an
active area of research (e.g., [1], [2], [9], [11], [18], [20], [23],
[28]).

The target hardware platform assumed is a dedicated cluster
of heterogeneous machines (as opposed to a geographically
dispersed, loosely connected grid). Such a cluster may be
found in a military command post. The tasks considered in this
research are assumed to be taken from a frequently executed
predefined set, such as may exist in a military, lab or business
computing environment. The estimated time to compute (ETC)
values of each task on each machine are assumed to be known
based on user supplied information, experiential data, task
profiling and analytical benchmarking, or other techniques
(e.g., [12], [13], [16], [21], [30]). Determination of ETC values
is a separate research problem, and the assumption of such
ETC information is a common practice in mapping research
(e.g., [13], [15]–[17], [26], [29]).

For a given set of tasks, estimated makespan is defined as
the completion time for the entire set of tasks based on ETC
values. However, these ETC estimates may deviate from actual
computation times; e.g., actual task computation times may
depend on characteristics of the input data to be processed. For
this research, the actual makespan of a resource allocation is
required to be robust against errors in estimated task execution
times.

This research builds on earlier work in [22] that uses
robustness in a dynamic environment. In [22], makespan was
minimized while attempting to maintain a given robustness
constraint. In this research, robustness will be maximized
while maintaining a constraint on the allowable makespan for
the resource allocation. Maximizing robustness in this context
is equivalent to maximizing the amount of tolerable variation



that can occur in ETC times for mapped tasks while still
ensuring that a makespan constraint can be met by the resource
allocation. Because the optimization goals and constraints
differ between this paper and the work in [22], the heuristics
developed are different.

Dynamic mapping heuristics can be grouped into two cat-
egories: immediate mode and batch mode [20]. Immediate
mode heuristics immediately map a task to some machine in
the system for execution upon the task’s arrival. Batch mode
heuristics accumulate tasks until a specified condition is satis-
fied (e.g., a certain number of tasks have been accumulated, or
a specified amount of time has elapsed) before mapping tasks.
When the specified condition has been satisfied a mapping
event occurs and the entire batch of tasks (including any
previously enqueued tasks that have not yet begun execution)
is considered for mapping. A pseudo-batch mode can be
defined where the batch of tasks considered for mapping is
determined upon the arrival of a new task (i.e., a mapping
event occurs) that consists of all tasks in the system that
have not yet begun execution on some machine and are
not next in line to begin execution, i.e., previously mapped
but unexecuted tasks can be remapped. Pseudo-batch mode
heuristics were considered for this research. Therefore, in this
system a mapping event occurs whenever a new task arrives.

One of the areas where this work is directly applicable is
the development of resource allocations in enterprise systems
that support transactional workloads sensitive to response time
constraints, e.g., time sensitive business processes [24]. Often,
the service provider in these types of systems is contractu-
ally bound through a service level agreement to deliver on
promised performance. The dynamic robustness metric can be
used to measure a resource allocation’s ability to deliver on a
performance agreement.

The contributions of this paper include:
1) heuristics for solving the above resource management

problem,
2) simulation results for the proposed heuristics, and
3) an upper bound on robustness for the resource manage-

ment problem.
The remainder of the paper is organized as follows. Section

II formally states the problem statement for this research.
Heuristic solutions to the proposed problem, including the
definition of an upper bound on the attainable robustness
value are presented in Section III. Section IV describes the
simulation setup. The simulation results are outlined and
examined in Section V. The related work is considered in
Section VI and Section VII concludes the paper.

II. PROBLEM STATEMENT

In this study, T independent tasks (i.e., there is no inter-
task communication) arrive at a mapper dynamically, where
the arrival times of the individual tasks are not known in
advance. Arriving tasks are each mapped to one machine
in the set of M machines that comprise the heterogeneous
computing system. Each machine is assumed to execute a
single task at a time (i.e., no multitasking). In this environment,

the robustness of a resource allocation must be determined
at every mapping event—recall that a mapping event occurs
when a new task arrives to the system. Let T (t) be the set
of tasks either currently executing or pending execution on
any machine at time t, i.e., T (t) does not include tasks that
have already completed execution. Let Fj(t) be the predicted
finishing time of machine j for a given resource allocation
µ based on the given ETC values. Let MQj(t) denote the
subset of T (t) previously mapped to machine j’s queue and
let scetj(t) denote the starting time of the currently executing
task on machine j. Mathematically, given some machine j

Fj(t) = scetj(t) +
�

∀i∈MQj(t)

ETC(i, j). (1)

Let β(t) denote the maximum of the finishing times Fj(t)
for all machines at time t—i.e., the predicted makespan at
time t. Mathematically,

β(t) = max
∀j∈[1,M ]

{Fj(t)}. (2)

The robustness metric for this work has been derived using
the procedure defined in [3]. In our current study, given uncer-
tainties in the ETC values, a resource allocation is considered
robust if, at a mapping event, the actual makespan is no more
than τ seconds greater than the predicted makespan. Thus,
given a resource allocation µ, the robustness radius rµ(Fj(t))
of machine j can be quantitatively defined as the maximum
collective error in the estimated task computation times that
can occur where the actual makespan will be within τ time
units of the predicted makespan. Mathematically, building on
a result in [3],

rµ(Fj(t)) =
τ + β(t)− Fj(t)�

|MQj(t)|
. (3)

The robustness metric ρµ(t) for a given mapping µ is simply
the minimum of the robustness radii over all machines [3].
Mathematically,

ρµ(t) = min
∀j∈[1,M ]

�
rµ

�
Fj(t)

��
. (4)

With the robustness metric defined in this way, ρµ(t) corre-
sponds to the collective deviation from assumed circumstances
(relevant ETC values) that the resource allocation can tolerate
and still ensure that system performance will be acceptable
(the actual makespan is within τ of the predicted).

Let Te be the set of all mapping event times. The robustness
value of the mapping is defined as the smallest robustness
metric that occurs at any mapping event time in Te. The
primary objective of heuristics in this research is to maximize
the robustness value, i.e.,

maximize
�

min
∀te∈Te

ρµ(te)
�

. (5)

In addition to maximizing robustness, heuristics in this re-
search must complete all T incoming tasks within an overall
makespan constraint (α). Therefore, the goal of heuristics
in this research is to dynamically map incoming tasks to



machines such that the robustness value is maximized while
completing all tasks within an overall makespan constraint
(based on ETC values).

III. HEURISTICS

A. Overview
Five pseudo-batch mode heuristics were studied for this

research. All of the heuristics used a common procedure
to identify a set of feasible machines, where a machine is
considered feasible if it can execute the task without violating
the makespan constraint that is, for a task under consideration,
a machine is considered feasible if that machine can satisfy
the makespan constraint when the task is assigned to it. The
subset of machines that are feasible for the task is referred
to as the feasible set of machines. To avoid idle machines
in the system caused by waiting for a heuristic to complete a
mapping event, a task that is next in line to begin execution on
any machine will not be considered for mapping at a mapping
event. While it is still possible that a machine may become
idle, it is highly unlikely for the assumptions in this research
(the average execution time of a task is 120 seconds while the
average execution time of a mapping event is less than 0.6
seconds)

B. Heuristic Descriptions
1) Minimum Completion Time-Minimum Completion Time

(MinCT-MinCT): The MinCT-MinCT heuristic uses a variant
of the Min-Min heuristic defined in [14]. For each mappable
task, MinCT-MinCT identifies the set of feasible machines.
From each task’s set of feasible machines, the machine that
minimizes completion time for the task is selected. If for any
task there are no feasible machines, then the heuristic will fail.
From these task/machine pairs, the pair with the minimum
completion time is selected and the task is mapped onto its
chosen machine. This procedure is repeated until all mappable
tasks have been mapped. The procedure at each mapping event
can be summarized as follows:

i A task list is generated that includes all mappable tasks.
ii For each task in the task list, find the set of feasible

machines. If the set is empty for any task, exit with
error (“constraint violation”).

iii For each mappable task (ignoring other mappable tasks),
find the feasible machine that minimizes completion
time.

iv From the above task/machine pairs select the pair that
minimizes completion time.

v Remove the task from the task list and map it onto the
chosen machine.

vi Update the machine available time.
vii Repeat ii-vi until the task list is empty.
2) Maximum Robustness-Maximum Robustness (MaxR-

MaxR): The MaxR-MaxR heuristic builds on the concept of
the Max-Max heuristic defined in [14]. For each mappable
task, MaxR-MaxR identifies the set of feasible machines.
From each task’s set of feasible machines, the machine that
maximizes the robustness metric for the task is selected. If for

any task there are no feasible machines then the heuristic will
fail. From these task/machine pairs, the pair that maximizes
the robustness metric is selected and that task is mapped onto
its chosen machine. This procedure is repeated until all of
the mappable tasks have been mapped. The procedure at each
mapping event can be summarized as follows:

i A task list is generated that includes all mappable tasks.
ii For each task in the task list, find the set of feasible

machines. If the set is empty for any task, exit with
error (“constraint violation”).

iii For each mappable task (ignoring other mappable tasks),
find the feasible machine that maximizes the robustness
radius.

iv From the above task/machine pairs select the pair that
maximizes the robustness radius.

v Remove the task from the task list and map it onto the
chosen machine.

vi Update the machine available time.
vii Repeat ii-vi until task list is empty.
3) Maximum Robustness-Minimum Completion Time

(MaxR-MinCT): MaxR-MinCT builds on the concept of
the Max-Min heuristic defined in [14]. For each mappable
task, MaxR-MinCT identifies the set of feasible machines.
From each task’s set of feasible machines, the machine that
minimizes completion time for the task is selected. If for any
task there are no feasible machines, then the heuristic will
fail. From these task/machine pairs, the pair that maximizes
the robustness metric is selected and that task is mapped onto
its chosen machine. This procedure is repeated until all of
the mappable tasks have been mapped. The procedure at each
mapping event can be summarized as follows:

i A task list is generated that includes all mappable tasks.
ii For each task in the task list, find the set of feasible

machines. If the set is empty for any task, exit with
error (“constraint violation”).

iii For each mappable task (ignoring other mappable tasks),
find the feasible machine that minimizes completion
time.

iv From the above task/machine pairs select the pair that
maximizes the robustness radius.

v Remove the task from the task list and map it onto the
chosen machine.

vi Update the machine available time.
vii Repeat ii-vi until task list is empty.
4) Minimum Completion Time-Maximum Robustness

(MinCT-MaxR): For each mappable task, MinCT-MaxR
identifies the set of feasible machines. From each task’s
set of feasible machines, the machine that maximizes the
robustness metric is selected. If for any task there are no
feasible machines, then the heuristic will fail. From these
task/machine pairs, the pair that minimizes completion time
is selected and that task is mapped onto its chosen machine.
This procedure is repeated until all of the mappable tasks
have been mapped. The procedure at each mapping event can
be summarized as follows:



i A task list is generated that includes all mappable tasks.
ii For each task in the task list, find the set of feasible

machines. If the set is empty for any task, exit with
error (“constraint violation”).

iii For each mappable task (ignoring other mappable tasks),
find the feasible machine that maximizes the robustness
radius.

iv From the above task/machine pairs select the pair that
minimizes completion time.

v Remove the task from the task list and map it onto the
chosen machine.

vi Update the machine available time.
vii Repeat ii-vi until task list is empty.
5) MaxMaxMinMin (MxMxMnMn): This heuristic makes

use of two sub-heuristics to obtain a mapping. It uses a
combination of Min-Min with a robustness constraint (to
minimize makespan while maintaining the current robustness
value) and Max-Max (based on robustness) to maximize
robustness while still finishing all T tasks within the overall
makespan constraint. The mapping procedure begins execution
using the Min-Min heuristic with τ as the robustness level
to be maintained—τ was chosen based on the upper bound
discussion presented in Subsection III-D. The procedure at
each mapping event can be summarized as follows:

i A task list is generated that includes all mappable tasks.
ii Min-Min component

a) For each task in the task list, find the set of
machines that satisfy the robustness level if the
considered task is assigned to it. If the set is empty
for any task, go to step iii.

b) From the above set of machines, for each mappable
task (ignoring other mappable tasks), find the fea-
sible machine that minimizes the completion time.

c) From the above task/machine pairs select the pair
that minimizes completion time.

d) Remove the task from the task list and map it onto
its chosen machine.

e) Update the machine available time.
f) Repeat a-e until task list is empty, exit.

iii Max-Max component
g) A task list is generated that includes all mappable

tasks (any task mapped by Min-Min in this map-
ping event are remapped).

h) For each task in the task list, find the set of feasible
machines. If the set is empty for any task, exit with
error (“constraint violation”)

i) For each mappable task (ignoring other mappable
tasks), find the feasible machine that maximizes
the robustness radius.

j) From the above task/machine pairs select the pair
that maximizes the robustness radius.

k) Remove the task from the task list and map it onto
the chosen machine.

l) Update the machine available time.
m) Repeat h-l until task list is empty.

iv Update the robustness level to the new robustness value
(the smallest robustness metric that has occurred).

C. Fine Tuning (FT)
A post-processing step, referred to as fine tuning (FT) was

employed to improve the robustness value produced by a
mapping. Fine tuning reorders tasks in the machine queues
in ascending order of execution time on that machine (as
done for a different problem environment in [31]), i.e., smaller
tasks are placed in the front of the queues. This procedure
is performed at each mapping event after executing one of
the above heuristics. This procedure will not directly impact
the overall finishing times of the machines, but does help in
getting the smaller tasks out of the machine queues faster
and thus helps reduce the numerator in equation 3, which
correspondingly improves the robustness metric.

D. Upper Bound
Let the provided constant τ be the upper bound on ro-

bustness. To prove that robustness can be no higher than τ
is to show that at least one machine will have at least one
task assigned to it during the course of the simulation. When
the first task is assigned to some machine in the system the
robustness radius of that machine becomes τ . In equation 3,
β(t)−Fj(t) goes to zero for the makespan machine. Because
the machine with the first and only task assigned to it is
now the makespan defining machine, its robustness radius is
now τ . The robustness radius of this machine defines the
robustness metric for the system because it is the smallest
of the robustness radii at this mapping event. Because the
robustness value is defined as the smallest robustness metric
over all mapping events, that value can be no greater than τ .

IV. SIMULATION SETUP

The simulated environment consists of T = 1024 indepen-
dent tasks and M = 8 machines. This number of tasks and
machines was chosen to present a significant mapping chal-
lenge for each heuristic and to prevent an exhaustive search for
an optimal solution (however, the presented techniques can be
applied to environments with different number of tasks and
machines). As stated earlier, each task arrives dynamically
and the arrival times are not known a priori. For this study,
200 different ETC matrices were generated, 100 with high
task, high machine heterogeneity (HIHI) and 100 with low
task, low machine heterogeneity (LOLO)([6]). All of the ETC
matrices generated were inconsistent (i.e., machine A being
faster than machine B for task 1 does not imply that machine
A is faster than machine B for task 2) [6]. All ETC matrices
were generated using the gamma distribution method presented
in [4]. The arrival time of each incoming task was generated
according to a Poisson distribution. The mean task inter-arrival
rate was eight seconds.

In the gamma distribution method of [4], a mean task
execution time and coefficient of variation (COV) are used
to generate ETC matrices. In the HIHI heterogeneity case, the
mean task execution time was set to 120 seconds and a COV of



0.9 was used for both task and machine heterogeneity. For the
LOLO heterogeneity case, a mean task execution time of 120
seconds was used with a COV of 0.3 for both task and machine
heterogeneity. The value of τ chosen for this study was 120
seconds. The performance of each heuristic was studied across
all 200 different simulation trials (ETC matrices).

V. RESULTS

In Figures 1 and 2, the average robustness value (over all
mapping events) for each heuristic is plotted with their 95%
confidence intervals. The average makespan results for each
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Fig. 1. Average robustness value (over all mapping events) for the LOLO
case with α = 12500.
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Fig. 2. Average robustness value (over all mapping events) for the HIHI
case with α = 14000.

of the heuristics (with 95% confidence intervals) are shown in
Figures 3 and 4. The value of α was set to 14000 for HIHI
and 12500 for LOLO. In Figures 1, 2, 3, and 4 the number
of failed trials (out of 100) is indicated above the results for
each heuristic, i.e., the number of trials for which the heuristic
was unable to successfully find a mapping for every task given
the overall makespan constraint. The effects of fine tuning on
each of the heuristics are also plotted in Figures 1–4 including
the 95% confidence intervals.
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Fig. 3. Average makespan for the LOLO case with α = 12500.

11500.00

12000.00

12500.00

13000.00

13500.00

14000.00

MinCT-MinCT MaxR-MaxR MaxR-MinCT MInCT-MaxR MxMxMnMn

m
ak

es
pa

n

No Fine Tuning Fine Tuning

39

 4
 0

 0

0

 6

 0

 0 0 0

Fig. 4. Average makespan for the HIHI case with α = 14000.

The average execution time of each heuristic over all
mapping events (on a typical unloaded 3GHz Intel Pentium 4
desktop machine) in all 200 trials is shown in Table I. Recall
that the heuristics operate in a pseudo-batch mode, therefore,
the times in Table I are the average time for each heuristic to
map an entire batch of tasks.

As can be seen from Figures 1 and 2, MxMxMnMn with
fine tuning gives the best robustness result for both the HIHI
and LOLO cases (although there is one failure).

TABLE I
AVERAGE EXECUTION TIMES, IN SECONDS, OF A MAPPING EVENT FOR

THE PROPOSED HEURISTICS.

heuristic average execution time (sec.)
MinCT-MinCT 0.023
MaxR-MinCT 0.028
MinCT-MaxR 0.028
MaxR-MaxR 0.0563
MxMxMnMn 0.0457

The good performance of MxMxMnMn can be attributed
to the fact that the maintainable robustness value is by
definition monotonically decreasing, and its approach tries to



minimize makespan (using Min-Min) while maintaining the
current robustness value. If that is not possible it instead
maximizes robustness using Max-Max–attempting to minimize
the degradation in the robustness value.

The high number of failed trials for MaxR-MaxR for both
the HIHI and LOLO cases can be attributed to the fact that the
heuristic tries to maximize the robustness metric at all mapping
events, but in doing so neglects the corresponding increase in
machine finishing times. For example, consider the following
two machine system with a current robustness value of 60 and
machine queues with the task execution times as shown,

m1: t1(10) t3(10)
m2: t2(50)

Assume that a new task t4 arrives with execution times of
10 and 50 time units on machines m1 and m2, respectively.
The MaxR-MaxR heuristic will map task t4 to machine m2,
which increases makespan because assigning t4 to machine
m1 would decrease the robustness metric. However, mapping
t4 to m1 would give a new robustness metric of 80.8 that is
still greater than the current robustness value of 60.

Although, MinCT-MinCT is able to achieve one of the best
makespan (Figures 3 and 4) for both the HIHI and LOLO
cases, its robustness value is not one of the best, which
confirms the fact that just minimizing the finishing times of
the machines does not guarantee a higher value of robustness.

For both the HIHI and LOLO cases, MinCT-MaxR per-
formed relatively better than MaxR-MinCT in terms of ro-
bustness. This can be explained in terms of the first stage
choice of machines for this pair of two-stage greedy heuristics.
MinCT-MaxR places more emphasis on directly optimizing
the primary objective of maximizing the robustness value as
opposed to minimizing makespan. By minimizing completion
time in the second stage, MinCT-MaxR is able to stay within
the overall makespan constraint while still maximizing ro-
bustness. This is evident from zero failures that occurred for
MinCT-MaxR in both the LOLO and HIHI cases.

The process of fine tuning did improve the results of the
heuristics, though not substantially (less than 12% for the best
HIHI case and less than 5% for the best LOLO case). Further,
it is possible that fine tuning when used with MxMxMnMn
can cause some trials to fail to meet the makespan constraint.
This occurs because fine tuning attempts to reduce the number
of tasks in the machine queues by moving small tasks up in
the queues. Thus, it is possible for the heuristic to maintain
a higher robustness value over its execution, but at certain
mapping events when the Min-Min component of the heuristic
tries to map a task using a higher robustness constraint, it is
likely that it will not choose the minimum completion time
machine for the task because it is not feasible, which results in
a higher finishing time. For example, consider a two machine
system with the following machine queues,

m1: t1(150)
m2: t2(30) t3(80)

Assume that a new task t4 arrives with execution times of 80
and 20 on machines m1 and m2, respectively. If MxMxMnMn
maps this task using the Min-Min component with a robustness
level of τ/

√
2, the mapping would be:

m1: t1(150) t4(80)
m2: t2(30) t3(80)

But if MxMxMnMn uses the Min-Min component with a
robustness level of τ/2, the mapping would be:

m1: t1(150)
m2: t2(30) t3(80) t4(20)

Finally, because MxMxMnMn uses a Max-Max heuristic to
maximize robustness it is prone to the same issues discussed
previously for the MaxR-MaxR heuristic.

The proposed pseudo-batch mode heuristics can allow some
tasks to be starved of machines. That is, some tasks may
be continually remapped at each successive mapping event
without actually being executed. In this environment, once
the mappable tasks have been remapped by a pseudo-batch
mode mapper they may be reordered, according to their
arrival order, in the input queues of their respective machines.
Reordering tasks according to their arrival order ensures that
task starvation does not occur. However, this may impact the
robustness metric at later mapping events, so this is not done
given the current performance metric.

VI. RELATED WORK

The research presented in this paper was designed using
the four step FePIA procedure described in [3]. A number of
papers in the literature have studied robustness in distributed
systems (e.g., [5], [8], [25], [27]).

The research in [5] considers rescheduling of operations
with release dates using multiple resources when disruptions
prevent the use of a preplanned schedule. The overall strategy
is to follow a preplanned schedule until a disruption occurs.
After a disruption, part of the schedule is reconstructed to
match up with the pre-planned schedule at some future time.
Our work considers a slightly different environment where task
arrivals are not known in advance. Consequently, in our work
it was not possible to generate a preplanned schedule.

The research in [8] considers a single machine scheduling
environment where processing times of individual jobs are
uncertain. Given the probabilistic information about processing
times for each job, the authors in [8] determine a normal
distribution that approximates the flow time associated with
a given schedule. The risk value for a schedule is calculated
by using the approximate distribution of flow time (i.e., the
sum of the completion times of all jobs). The robustness of
a schedule is then given by one minus the risk of achieving
sub-standard flow time performance. In our work, no such
stochastic specification of the uncertainties is assumed.

The study in [25] defines a robust schedule in terms of
identifying a Partial Order Schedule (POS). A POS is defined
as a set of solutions for the scheduling problem that can



be compactly represented within a temporal graph. How-
ever, the study considers the Resource Constrained Project
Scheduling Problem with minimum and maximum time lags,
(RCPSP/max), as a reference, which is a different problem
domain from the environment considered here.

In [27], the robustness is derived using the same FePIA
procedure used here. However the environment considered is
static (off-line), as opposed to the dynamic (on-line) environ-
ment in this research. The robustness metric and heuristics
employed in a dynamic environment are substantially different
from those employed in [27].

VII. CONCLUSIONS

Five different pseudo-batch mode heuristics were designed
to address a dynamic resource allocation problem. A process
of fine tuning was also adapted to the problem to maximize the
robustness of a mapping in the proposed environment. Each
heuristic was analyzed for its ability to maximize robustness
given a hard constraint on overall makespan. Of the pro-
posed heuristics, the MxMxMnMn heuristic with fine tuning
demonstrated good potential in the simulation environment and
should be considered further. This paper also presented an
upper bound on the attainable robustness for the considered
resource management problem.
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