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Abstract—Today’s data centers face the issue of balancing electricity use and completion times of their workloads. Rising electricity
costs are forcing data center operators to either operate within an electricity budget or to reduce electricity use as much as possible
while still maintaining service agreements. Energy-aware resource allocation is one technique a system administrator can employ to
address both problems: optimizing the workload completion time (makespan) when given an energy budget, or to minimize energy
consumption subject to service guarantees (such as adhering to deadlines). In this paper, we study the problem of energy-aware static
resource allocation in an environment where a collection of independent (non-communicating) tasks (“bag-of-tasks”) is assigned to a
heterogeneous computing system. Computing systems often operate in environments where task execution times vary (e.g., due to
cache misses or data dependent execution times). We model these execution times stochastically, using probability density functions.
We want our resource allocations to be robust against these variations, where we define energy-robustness as the probability that the

energy budget is not violated, and makespan-robustness as the probability a makespan deadline is not violated. We develop and
analyze several heuristics for energy-aware resource allocation for both energy-constrained and deadline-constrained problems.

Index Terms—Heterogeneous computing, static resource allocation, power-aware computing, DVFS, robustness

1 INTRODUCTION

recent study [22] estimates that the electricity used by

data centers has increased by 56 percent worldwide
between the years 2005 and 2010. With the electricity
demands increasing and the energy costs of operating a
data center surpassing 20 percent of the total costs [12], it
has become common practice to either operate within an
electricity budget or to reduce electricity use while main-
taining service guarantees. The need for energy-efficient
data centers is becoming more apparent as both power con-
sumption and operating costs continue to rise. Energy-
aware resource management techniques that can improve
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energy efficiency are therefore becoming increasingly
important.

A commonly used technique to manage the energy effi-
ciency in computing systems is to employ dynamic voltage
and frequency scaling (DVFS) in server processors [14].
DVES allows the cores in a processor to operate in discrete
performance states (P-states), with lower-numbered P-states
consuming more power but reducing the execution time of
tasks. Because server processors use a large portion of the
energy in a data center, we can employ DVEFS to provide a
trade-off between execution time and energy consumption.

Many large-scale computing facilities (e.g., data centers)
incorporate heterogeneous resources that utilize a mix of
different machines to execute workloads with diverse
computational requirements. The execution times of tasks
on heterogeneous machines are typically inconsistent such
that if machine A is faster than machine B for a given task,
machine A may not be faster for all tasks [4]. By assigning
tasks to machines in an intelligent manner, it is possible to
leverage machine heterogeneities to reduce task execution
times and energy consumption.

The act of assigning tasks to machines is commonly
referred to as resource allocation. Resource allocation deci-
sions often rely on estimated values for task execution times
whose actual values vary and may differ from available esti-
mates (e.g., due to cache misses or data dependent execu-
tion times). These uncertainties in task execution times may
cause a completion time (makespan) deadline or energy
budget to be violated, therefore we want resource allocation
techniques to be robust against these variations.
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This research addresses the problem of statically allocat-
ing a workload of independent tasks to a heterogeneous
computing cluster. Static mapping is used in several envi-
ronments [4], [32], such as planning an efficient schedule
for some set of jobs to be run at some time in the future. In
the resource management literature, it is common to
assume that information that characterizes the execution
times of frequently executed tasks can be collected, e.g.,
[71, [20], [40], [43]. We work closely with Oak Ridge
National Labs, and in their environment, as well as others,
similar types of tasks are executed frequently allowing for
the collection of historical information about the execution
times of tasks on machines. In this study, we assume
knowledge of the means and variances of the execution
times of each task on each machine, and can use this infor-
mation to build probability distributions that approximate
historical information. We want our resource allocations to
be robust against the variations in the task execution times,
where we define energy-robustness as the probability that
the energy budget is not violated, and makespan-robustness
as the probability a makespan deadline is not violated.
These probabilities are calculated using the means and
variances of the task execution times.

By intelligently allocating resources and configuring
DVFS, we utilize the heterogeneities in execution time and
power to address two problems: (1) optimizing (maximiz-
ing) the makespan-robustness with a constraint on energy-
robustness; and (2) optimizing (maximizing) the energy-
robustness with a constraint on makespan-robustness. We
refer to (1) as MO-EC (makespan-robustness optimization
under an energy-robustness constraint) and (2) as EO-MC
(energy-robustness optimization under a makespan-robust-
ness constraint). This study focuses on the design and anal-
ysis of makespan- and energy-robust resource allocation
heuristics for a heterogeneous computing cluster to address
both the energy-constrained and deadline-constrained
problems. We also analyze the impact of four different
methods of constrained optimization used within the heu-
ristics, and we demonstrate the flexibility and performance
of the heuristics when the constraints are easy or difficult to
meet. In summary, we make the following contributions:

e The design and analysis of resource management
techniques for both optimizing makespan-robust-
ness with an energy-robustness constraint (MO-EC)
and optimizing energy-robustness with a makespan-
robustness constraint (EO-MC).

e An enhanced power model that uses real system
specifications for CPU voltage and frequency of
DVFS P-states and overhead power of additional
server components. Also a workload model where
tasks have varying degrees of compute and memory
intensity.

e An analysis on the effectiveness of our techniques on
two different sized platforms that vary in both num-
ber of machines and tasks.

e A sensitivity analysis of our techniques against the
level of heterogeneity.

The rest of this paper is organized as follows. Section 2

discusses related work. The system model and workload
are defined in Section 3. Section 4 describes the stochastic
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measures for makespan and energy consumption. The
energy-aware resource allocation heuristics are proposed in
Section 5, and the methods of constrained optimization
used in conjunction with the heuristics are discussed in Sec-
tion 6. Section 7 discusses the results, and finally we give
the conclusions in Section 8.

2 RELATED WORK

Energy-aware resource allocation in high performance com-
puting (HPC) systems is an important research area as high
power consumption and associated energy costs are diffi-
cult obstacles. Therefore, numerous recent works have
focused on energy-aware resource allocation techniques
that exploit energy saving techniques such as DVFS to
reduce the energy consumption of computing systems. To
the best of our knowledge, our work is the first to address
energy-aware resource allocation of a bag-of-tasks with
uncertain task execution times to a heterogeneous comput-
ing system with goals of considering robustness of both
makespan and energy consumption.

Energy-aware scheduling on heterogeneous platforms
that considers deterministic task execution times has been
previously studied (e.g., [23], [28], [29]). Li and Wu [23] con-
sider energy-aware scheduling of a collection of indepen-
dent tasks on a heterogeneous platform that is DVFS-
enabled. The primary contribution is the design of a
resource allocation algorithm that minimizes energy con-
sumed while ensuring the collection of tasks completes by a
common deadline. Energy-aware scheduling of a bag-of-
tasks application to a heterogeneous computing system is
considered in [28]. The goal in that paper is to allocate the
bag of same-size tasks to the heterogeneous system to mini-
mize energy consumed under a throughput constraint.
Energy-aware scheduling on milliclusters is studied in [29].
Milliclusters are a collection of numerous low-power proc-
essing elements (e.g., those found in mobile devices) that
are organized into a large cluster for scientific computing
purposes. Three heuristics are designed to minimize energy
consumption to complete a collection of tasks while adher-
ing to each task’s individual deadline. Our work is novel
and different from those listed because it considers uncer-
tain task execution times (modeled as random variables)
and the design of relevant performance measures to capture
the robustness of both makespan and energy consumption
against these uncertain task execution times.

Robust resource allocation of tasks with uncertain execu-
tion times has been studied, e.g., [5], [6], [8], [18]. These
works do not consider energy consumption, which is the
focus of our work. Energy-aware resource allocation of
tasks with uncertain execution times was studied in [42].
The goal for the resource allocation techniques in [42] is to
finish as many tasks as possible by their individual dead-
lines without violating an energy constraint. The definition
of robustness is the expected number of tasks that will com-
plete by their individual deadlines. Our work considers
complex resource management techniques designed for a
static scheduling problem, probabilistic measures for both
energy consumption and performance, and a more accurate
power model that includes the overhead power of compute
nodes and static power consumption of cores.
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3 SysTEM MODEL

3.1 Compute Nodes

The cluster we model consists of N heterogeneous compute
nodes, and each node i contains n; homogeneous cores.
Cores are the most basic processing element in this study,
with each core processing one task at a time, e.g., as done in
a Cray [9]. Cores are also DVFS-enabled to use P-states that
allow a core to change operating voltage and frequency to
provide a trade-off between the execution time and power
consumption of the processor. Each core of compute node i
has PS; P-states available. We assume each core in the sys-
tem can operate in an individual P-state, and our resource
allocation techniques are designed such that P-states do not
switch during task execution. Lower-numbered P-states
consume more power, but provide faster execution times,
e.g., P-state 0 provides the shortest execution times but also
consumes the most power.

3.2 Power Model

The power consumption of a node includes the dynamic
power of the cores, the static power consumption of the
cores, and the base overhead power of the node (e.g., for
disks, memory, network interface cards) [26]. We assume
that when a core is finished processing its assigned work-
load, the core is able to deactivate and the power consump-
tion (both dynamic and static) becomes negligible.
Similarly, when all cores of a compute node are finished
with their assigned workloads, the entire node is able to
deactivate and consume no overhead power. For our static
resource allocation problem with independent tasks, nodes
do not have idle time because nodes are active when proc-
essing tasks and then deactivate when finished with their
assigned workload, the ACPI S6 state [14].

For core j within node i operating in P-state 7, we use the
well-known equation for dynamic power (P;;T) using the
load capacitance (Cj), the supply voltage (Vdd;;), and the
frequency (fj) as [13]

P o Cy - VAdd2, - [ 1)

We consider the static power consumption of cores and
the overhead power used by additional components (e.g.,
memory, disks, add-on cards). We assume the static power
of a core and the overhead power of a node are constant
and independent of the voltage and frequency of the P-state
that the core is currently in.

3.3 Workload

The workload consists of a collection of T independent
tasks to be completed before a given system deadline 8
and within a given energy budget of A. Such a collection of
independent tasks is known as a bag-of-tasks. We assume
the tasks to be executed are known a priori such that we
can perform a static (i.e., off-line) mapping. The actual
values of task execution times vary (e.g., due to cache
misses or data dependent execution times), and we model
the execution times stochastically to account for these var-
iations. That is, we are provided a mean and a variance
that describe an execution time probability density func-
tion (pdf) for each task executing on each compute node in
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each P-state. In an actual system, the means and variances
of these Gaussian execution time distributions can be
approximated using historical, experimental, or analytical
techniques [17], [24], [34]; in Section 7 we discuss our
values for evaluation. The use of Gaussian distributions
allows us to sum task execution times using a closed-form
equation rather than having to perform convolution,
however our proposed resource management techniques
are applicable for task execution times that are described
by any distribution.

It has been shown [21] that the arithmetic intensity (the
number of operations performed per word of memory
transferred) of a workload can greatly affect how the execu-
tion time of a task scales with the frequency of the CPU. The
execution times of tasks with high arithmetic intensity gen-
erally scale proportionally with frequency, e.g., when the
frequency is halved the execution time of the task doubles.
Because the overhead power of a compute node remains
constant regardless of P-state, the greater execution times
resulting from low-power P-states can result in greater
energy consumption than when executing the task as fast as
possible in P-state 0. The most energy-efficient P-state
depends on the ratio of compute energy saved by operating
in a low-power P-state to the amount of overhead energy
consumed over the longer execution time that results from
the decrease in frequency. With memory intensive work-
loads (i.e., workloads with low arithmetic intensity), a
reduction in frequency has less impact on the execution
times of tasks, because the processor spends a large portion
of cycles waiting for data from memory. Memory intensive
tasks offer greater potential for energy savings using DVFS,
as power can be greatly reduced with little effect on execu-
tion time. We assume each task is one of a set of task types
that is representative of the arithmetic intensity of the task.
Our method for the scaling of execution time by task type
and frequency is detailed in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2014.2362921.

4 STOCHASTIC MEASURES

4.1 Overview

The traditional performance measure for bag-of-tasks
scheduling problems is makespan, the time required for all
tasks within the bag to finish execution. In this study, we
also are concerned with the energy consumption required
to execute the bag-of-tasks, however, typically both make-
span and energy are measures that rely on deterministic
values for time. Because real environments have uncer-
tainty, resource allocation decisions in such environments
should be based on this stochastic information and be
robust against the variations in the task execution times.

We define a “robust” resource allocation as one that can
mitigate the impact of uncertainties on both performance
and energy objectives. To claim robustness for a system, the
following three questions must be answered [2]: (1) What
behavior makes the system robust? In our system, a resource
allocation is considered makespan-robust if the entire work-
load completes within the system deadline §, and energy-
robust if the workload can be completed within an energy
budget of A. (2) What uncertainties is the system robust against?
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We want our system to be robust against the uncertain task
execution times. (3) How is the robustness of the system quanti-
fied? We quantify the makespan-robustness of a resource
allocation as the probability that the entire workload is com-
pleted by §, and the energy-robustness as the probability
that the workload uses no more than A energy.

4.2 Makespan-Robustness

The execution time distribution for each task on each node
is modeled as a Gaussian distribution with a given mean
and variance. For a given resource allocation, let the set Tj;
denote tasks in T that have been assigned to core j in com-
pute node i and let ¢j; € Tj; where 1 < z < [T};]. Let PS( t}))
denote the assigned P state for task ¢7;. We denote the mean
execution time associated with task t’” executed in P-state
as u(tf;, w) and the associated variance as V/(tf;, ).

The calculation of the completion time of core j when
using a stochastic model for task execution times is per-
formed by taking the convolution of the random variables
(representing the execution times of tasks) for all tasks
assigned to core j. The convolution of two independent nor-
mally distributed random variables & and g produces a nor-
mally distributed random variable with its mean being the
sum of the means of @ and B and the variance being the
sum of the variances of & and B.

The expected finishing time of core j in compute node i,
denoted Fjj, is the sum of the mean execution times of all
tasks assigned that core and is given as

Fj= ),

th].eT,]

w(%, PS(i2)). @

1] ’ 1]

The variance of the completion time distribution of core j,
denoted 012]-, is the sum of the variances of the execution
times of all tasks assigned to that core and is given as

> V(5 PS(t)). 3)

T
Vtije’[;?;.

Thus, the completion time distribution of all tasks assigned
to core j in compute node i can be expressed as the distribu-
tion N(Fij,0%;). Given deadline §, we can compute the prob-

ability that N'(F;j,0%;) is less than § by converting N'(Fy;, 0%;)
to its associated cumulative density function (cdf) and find-
ing the probability associated with that core finishing before
time § (e, P(N(Fy;,07;) < §)). We define the overall make-
span-robustness of a resource allocation, denoted ¥, as the
minimum probability across all cores. That is, each core has
a probability of at least ¥ that it will complete its assigned
workload by deadline 8. We calculate ¥ as

¥ = min (mln PN (Fy,07;) < 8))). )

VieN “Vje

We denote the makespan-robustness constraint as I', so for
EO-MC we require resource allocations to meet this con-
straint (i.e., ¥ > I'). When using a distribution other than
the normal distribution for task execution times, the com-
pletion time for all tasks on a given core can be calculated
by taking the convolution of all of the task execution time
random variables assigned to that core. The makespan-
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robustness can then be calculated by converting the result
into its associated cdf and then finding the probability asso-
ciated with that core finishing before the deadline.

4.3 Energy-Robustness

The energy required to process the workload is determined
by summing the energy used by all tasks in the workload.
In our model, the overhead power of nodes (O;), the

dynamic power of cores (Pl'f,’,") and the static power of cores
(Pjfe") all contribute to the total energy consumed. These
power values are multiplied by the mean execution times of
tasks to calculate the expected energy to process the work-
load, or by the variances of the execution times of tasks to
calculate the variance in energy consumed to process the
workload. Let T7; denote the subset of tasks assigned to core
j of compute node i processed in P-state =, ie., Tj; =
{vt}; € Tij | PS(t};) = n}. The energy consumed is Calcu-
lated as the product of execution time (a random variable)
and average power (a deterministic value). The multiplica-
tion of a random variable with a scalar value has the effect
of multiplying the expected value by that value and the var-
iance by the square of that value [15]. The expected dynamic
energy spent by core j in compute node i at P-state ,

denoted Meanw , is the sum of the mean values of dynamic

energy consumption for all tasks assigned to that core and
is given as

Meanfj{f Z Pg?,’r" (tf], 7). (5)
teTy
Likewise, the variance of the dynamic energ}l spent by core j
in compute node i in P-state 7, denoted Varyj;, is the sum of
the variance values for dynamic energy consumption for all
tasks assigned to that core and is given as

Var wf_ Z ( Wr) (ZJ’ ) ©

<1
Similarly, the expected static energy consumed by core j
on node i, denoted Meansf“t is the sum of the mean values
of static energy consumption for all tasks assigned to that

core and is given as

Meanf]t,‘? = Z pplat. u,(t“, ) ()

The variance of static energy, denoted Varfjs', is the sum of
the variance values of static energy consumption for all

tasks assigned to that core and is given as

Vart = > ()" v (t5,m). ®
ey

Recall that a node remains active and consumes over-
head power (O;) until all cores within the node are finished
with their workload. Let F; be the maximum expected com-
pletion time among cores in node i, and o7 be the associated
variance. The energy required to process the workload
includes the overhead power, the dynamic power con-
sumed by cores, and the static energy consumed by cores.
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We calculate the expected energy required to process the
entire workload across all compute nodes, denoted ¢, as

.= i(F 0; + Z Z Meangﬁ’—l—Meanf]tff)). 9)

j=1 VrePS;

The variance of the energy required to process the entire
workload, denoted y, is

N n;
Y= Z( 0y (0:)? +Z Z VarZ{,"—i—Varf;;t)), (10)

=1 j=1 VnePSs;

The distribution for the total energy consumed to process
the workload can be expressed as N (¢,y). Given an energy
budget of A, we can compute the probability that N'(¢,y) is
less than A by converting N(¢,y) to its associated cdf and
finding the probability that the energy required to process
the workload is less than A (i.e., P(N(¢,y) < A)). We denote
this probability as ¢, i.e., ¢ is the energy-robustness of a
resource allocation. The energy-robustness constraint is
denoted 1, so for MO-EC we require resource allocations to
meet this constraint (i.e., ¢ > n).

5 HEURISTICS

5.1 Overview

The goal of this study is to design and analyze resource allo-
cation heuristics with two different goals, MO-EC and EO-
MC. In this section, we present three greedy heuristics and
three non-greedy heuristics that have been adapted for our
environment. The minimum expected energy (Min-Energy)
and Min-Min Completion Time (Min-Min CT) heuristics
provided poor results, but were found to be useful as seeds
for our non-greedy heuristics. We define a solution gener-
ated by a resource allocation technique as a complete map-
ping of tasks to both cores and P-states. Though we use
Gaussian distributions for task execution times in our simu-
lation study, our heuristics can use the mean values of any
distribution to perform resource allocation.

5.2 Minimum Expected Energy

The minimum expected energy heuristic greedily assigns
each task to the maximum makespan-robustness core in the
node and P-state combination that minimizes the expected
energy consumption of the task.

5.3 Min-Min Completion Time
Min-Min Completion Time is a two-phase greedy heuristic,
based on concepts in [4], [16], [25], [37]. We consider two
variations of the heuristicc, Min-Min P,,,, and Min-Min
Pin, that differ in how P-state assignments are selected.
Min-Min Pp,. All tasks are initially “unmapped” (placed
in the unmapped batch). Each unmapped task is then paired
to the core that yields the minimum expected completion
time (MECT) when each core is considered to be executing
in the lowest-numbered P-state (P-state 0). In the second
phase, the task-core combination that yields the overall
MECT is selected for assignment in P-state 0, and the task is
removed from the unmapped batch. The ready times of all
cores are updated and the heuristic begins another iteration.
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This process continues until all tasks are mapped (i.e., the
unmapped batch is empty).

Min-Min Pq,. Same as Min-Min P,,;, except using the
highest-numbered P-state.

5.4 Min-Min Balance

Min-Min Balance starts from an initial solution (either Min-
Min P, or Min-Min P,,,, and tries to improve the solution
using greedy modifications. The minimum makespan-robust-
ness core, denoted coreniny, refers to the core that has the
least probability of finishing its assigned workload by the
deadline, that is, the core that determines the makespan-
robustness measure of the solution. The maximum makespan-
robustness core, denoted core,,q.zu, refers to the core that has
the greatest probability of finishing its workload by the
deadline. We now show how we design the Min-Min Bal-
ance heuristic for MO-EC and EO-MC.

MO-EC. We start by generating an initial mapping
using Min-Min P,,,,. The solution is then modified to
increase makespan-robustness by reassigning tasks and
P-states, keeping moves that improve the solution (i.e.,
greater makespan-robustness value without violating the
energy-robustness constraint). The first step reassigns an
arbitrary task from coreminm to coremerza in the lowest-
numbered P-state that does not violate the energy-robust-
ness constraint. Then corep;,y and core,,qy are recalcu-
lated, and this step is repeated until any task transferred
from coreminm does not result in an improved solution.
The second step changes the P-state of an arbitrary task
on coreminym to a lower-numbered (i.e., better performing)
P-state unless the energy-robustness constraint will be
violated. If the constraint is not violated, core,,inar is reca-
lulated and the process is repeated until decreasing the
assigned P-state of any task on coreginy violates the
energy-robustness constraint.

EO-MC. We start by generating an initial mapping using
Min-Min P,. We use two steps that modify the allocation
to improve energy-robustness, keeping moves that improve
the solution (i.e., better energy-robustness without violating
the makespan-robustness constraint). The first step reas-
signs an arbitrary task from coreminy to coremqeznr in the P-
state that most improves energy-robustness without violat-
ing the makespan-robustness constraint. Then core,,iny and
coremazy are recalculated, and this step is repeated until
any task transferred from coreminy does not result in an
improved solution. The second step increases the value of
the assigned P-state of an arbitary task on coremq.ar by one
unless the makespan-robustness constraint will be violated.
If the constraint is not violated, coreyqzar is recalculated and
the process is repeated until increasing the assigned P-state
of any task on coremazar violates the constraint.

5.5 Tabu Search
5.5.1 Overview

The distinguishing feature of Tabu Search is its exploita-
tion of memory through the use of a Tabu List [11]. We
use a Tabu List to store regions of the search space that
have been searched and should not be searched again.
Our implementation of Tabu Search, based on concepts
in [4], combines intelligent local search (“short hops”)
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with global search (“long-hops”) in an attempt to find a
globally optimal solution.

Local search is performed using three short-hop opera-
tors: (1) task swap, (2) task reassignment, and (3) P-state reas-
signment. One short-hop consists of one iteration of all three
operators. Long-hops are performed when local search ter-
minates, with the purpose of jumping to a new neighbor-
hood in the search space, while avoiding areas already
searched. After each long-hop, short-hops are again per-
formed to locally search the region near the long-hop solu-
tion. The Tabu List stores unmodified long-hops G.e.,
starting solutions) that indicate neighborhoods that have
been searched before, and may not be searched again. A
new solution generated by a long-hop must differ from any
solution in the Tabu List by 25 percent of the task-to-core
and P-state assignments, otherwise a new long-hop solution
is generated. Pseudo-code for the Tabu Search heuristic is
given in Algorithm 1.

Algorithm 1. Pseudo-Code for Our Tabu Search Heuristic

1. while termination criteria not met do
2. generate new long-hop, avoiding Tabu areas
while solution is improving do
task swap
task reassignment
P-state reassignment
end while
8. end while

NG W

We now discuss how long-hops are performed and the
purpose of the mean rank matrix before detailing the three
short-hop operators (task swap, task reassignment, and P-state
reassignment).

5.5.2 Long-Hops

The purpose of a long-hop is to jump to new areas of the
solution space to begin a new local search (i.e., short-hops),
while avoiding areas of the search space that have already
been searched through the use of a Tabu List. The initial
solution (first long-hop) is generated using the appropriate
Min-Min Balance allocation (for MO-EC or EO-MC) to help
ensure that the constraints are met. Subsequent long-hop
solutions are generated by first unmapping 25 percent of
arbitrary tasks then reassigning them using Min-Min Bal-
ance, as before.

5.5.3 Mean Rank Matrix

We introduce the concept of a mean rank matrix that con-
tains the rank of each heterogeneous node for each task,
based on mean execution times. That is, for a given task, the
nodes are ranked by how fast the nodes can execute the task
(e.g., if node i can execute task t faster than node j, node i is
given a better rank for task ). Let the rank of task t on node
i be rank(t,i), where 1 < rank(t,i) < N. We define the best-
ranked (fastest) node for a task as the rank 1 node. When
comparing the rank of any two tasks A and B on node i, task
A is ranked lower (better) than task B if rank(A,1) is less
than rank(B, 7). The mean rank matrix is used in some of the
short-hop operators.
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5.5.4 Short-Hops Overview

The short-hop operators are used to perform greedy local
search on a solution generated by a long-hop. Task swap
swaps two tasks between two different cores, task reassign-
ment transfers a task from one core to another, and P-state
reassignment changes the P-state of a task. The task reassign-
ment and P-state reassignment operators modify the assign-
ments of specific tasks and cores, whereas task swap
incorporates some randomness by selecting arbitrary cores
to swap tasks. We found that incorporating some random-
ness with greedy intelligence provided the best results. We
tried several variations of the three short-hop operators but
only present our best-performing methods for the sake of
brevity. The decisions made by the three short-hop opera-
tors change depending on whether it is desired to solve
MO-EC or EO-MC. We first detail the operators when
designed for MO-EC, then explain changes when designed
for EO-MC.

5.5.5 Short-Hop Operators for MO-EC

Task swap. The goal of the task swap operator is to swap
tasks that are assigned to poorly (high) ranked nodes to bet-
ter low) ranked nodes, a move that can potentially improve
both makespan and energy-robustness. We divide the task
swap operator into four steps. (1) We first choose an arbitrary
core j and create a task list consisting of all tasks assigned to
core j on compute node i, recalling that the notation for such
a task list is Tj;. (2) Tj; is sorted in descending order by the
rank of each task for node i. (3) We select the first task in the
list, denoted tasky, and find the rank 1 node for the task,
denoted nodepes;. Within nodeyest, an arbitrary core z is cho-
sen. The task from core z that has the lowest rank for node i,
denoted taskp, is selected for swap. (4) The core assignments
for task4 and taskp are swapped, and the best P-state combi-
nation (according to the method of constrained optimization
used) is found to run the cores in when executing the tasks. If
the solution improves, the swap is kept and task swap ends.
Otherwise, the swap is not kept, and task swap repeats using
the next task in the list 7;; until the solution improves or all
tasks in Tj; have been considered.

Task reassignment. The goal of task reassignment is to
improve makespan-robustness by transferring tasks from
the core with the worst makespan-robustness to another
core. Task reassignment consists of three steps. (1) Find
the minimum makespan-robustness core (core j on com-
pute node i) and create a task list consisting of all tasks
assigned to that core (Tj;). (2) Tj; is sorted in descending
order by the rank of each task for node i. (3) We select
the first task in the list (tasky), and find the rank 1 node
for the task (nodepest). Within nodepes;, the highest make-
span-robustness core is selected as the target core (core
z), and task, is assigned to core z in the best P-state
(according to the constrained optimization method). If
the solution improves, the new assignment is kept and
task reassignment ends. Otherwise, the new assignment is
not kept, and task reassignment repeats using the next task
in the list Tj; until the solution improves or all tasks in
T;; have been considered.

P-state reassignment. The goal of P-state reassignment is to
change P-state assignments of tasks to greedily optimize the
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performance metric if the constraint is met, or to greedily
meet the constraint if the constraint is violated. If the energy-
robustness constraint has been met (i.e., ¢ > n), the mini-
mum makespan-robustness core (core j on compute node 1)
is chosen, and a task list is generated consisting of all tasks
assigned to that core (Tj;). A task is chosen arbitrarily from
the list (task4), and the P-state of the task is decreased by 1 if
not already currently assigned to execute in P0.

If the energy constraint has not been met (i.e., ¢ < n), the
maximum makespan-robustness core (core j on compute
node i) is chosen, and a task list is generated consisting of
all tasks assigned to that core (Tj;). A task is chosen arbi-
trarily from the task list (task4), and the P-state of the task is
changed to the one that gives the highest system-wide
energy-robustness.

For both cases, if the solution improves, the new P-state
is kept and P-state reassignment ends. Otherwise, the new P-
state is not kept, and P-state reassignment repeats using the
next task in the list Tj; until the solution improves or all
tasks in Tj; have been considered.

5.5.6 Short-Hop Operators for EO-MC

Task swap. We make the following two changes to task
swap to optimize for EO-MC instead of MO-EC. First, step 2
is changed to sort Tj; in descending order of expected
energy consumption instead of rank. Second, Step 3 is
changed to find the minimum energy node for task, and
selects taskp from core z that consumes the least expected
energy for node i.

Task reassignment. We change step 2 of task reassignment
from MO-EC to sort Tj; in descending order by expected
energy consumption instead of rank, and in step 3 the mini-
mum energy node is found as the destination for the trans-
fer of task rather than the rank 1 node.

P-state reassignment. 1f the makespan-robustness con-
straint has been met (i.e., ¥ > I'), the maximum makespan-
robustness core (core j on compute node i) is chosen, and a
task list is generated consisting of all tasks assigned to that
core (T3;). A task is chosen arbitrarily from the list (tasky),
and the P-state of the task is assigned to the P-state that
gives the best energy-robustness.

If the makespan-robustness constraint has not been met
(i.e.,, ¥ < I'), the minimum robustness core (core j on compute
node i) is chosen, and a task list is generated consisting of all
tasks assigned to that core (Tj;). A task is chosen arbitrarily
from the list (task,), and the P-state of the task is decreased
by 1if not already currently assigned to execute in PO.

5.6 Genetic Algorithm
5.6.1 Overview

Genetic algorithms have been shown to be effective in
resource allocation and job shop scheduling problems (e.g.,
[4], [10]). The Genitor [38] GA implemented in this study
operates on a population of 200 chromosomes (determined
empirically). Each chromosome is used to represent a solu-
tion (i.e.,, a complete resource allocation). A chromosome
consists of a collection of |T'| genes, where each gene repre-
sents a task assignment to a core and P-state. The initial
population is generated using four solutions generated heu-
ristically using Min-Energy, Min-Min P4, and P, and
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Min-Min Balance heuristics (using the appropriate Min-Min
Balance method for MO-EC or EO-MC), and 196 randomly
generated solutions.

After the initial population generation, all chromosomes
in the population are evaluated and ranked (based on
the method of constrained optimization used, detailed in
Section 6). Crossover and mutation operators are used to gen-
erate offspring chromosomes by altering existing solutions.
The GA enforces the population size by eliminating the low-
est-ranked chromosomes such that the population remains
fixed at its original size. We now discuss how crossover and
mutation are used to generate new offspring.

5.6.2 Crossover and Mutation

Two crossover operators are used to swap task assignments
or P-states between chromosomes: i) task-assignment cross-
over and ii) P-state crossover. Both crossover operators start
by selecting two parent chromosomes using a linear bias
[38] and two crossover points x and y are generated such
that x < y < |T'|. In task-assignment crossover, all of the task-
to-core assignments in genes ranging from x to y of the first
chromosome are swapped with all of the task-to-core
assignments in genes ranging from x to y of the second chro-
mosome. Because cores on different nodes may have differ-
ent numbers of P-states available, if a task changes nodes
we assign the task in the P-state that is closest to the clock
frequency of its previous assignment. After task-assignment
crossover, P-state crossover is performed. P-state crossover also
considers the offspring generated by task-assignment cross-
over when selecting parent chromosomes (i.e., an interme-
diate population of 202 chromosomes). In P-state crossover,
all of the P-state assignments in genes ranging from x to y of
the first chromosome are swapped with all of the P-states in
genes ranging from x to y of the second chromosome.
Assume an offspring is created from genes 1 tox — 1 and y
+ 1 to |T| of parent A, and genes x to y of parent B. Gene i
(x <i <y) of the offspring is assigned to the P-state of par-
ent B that most-closely matches the frequency of the P-state
of gene i in parent A. The crossover operators generate two
new offspring each (four total).

Two mutation operators are used to alter task-to-core
assignments and P-states: i) task-assignment mutation, and ii)
P-state mutation. Task-assignment mutation is probabilistically
performed on both of the offspring generated by task-assign-
ment crossover and P-state mutation is probabilistically per-
formed on both of the offspring generated by P-state
crossover. For both mutations, offspring chromosomes have
a probability p,, of being mutated (empirically set to 0.1). If
a chromosome is selected for mutation, each gene in that
chromosome has a probability pn, of being mutated (empir-
ically set to 0.001). In task-assignment mutation, if a gene is
mutated the task corresponding to that gene is assigned to a
random core (in a P-state selected as in task-assignment cross-
over). In P-state mutation, if a gene is mutated the task corre-
sponding to that gene is assigned to a random P-state. After
crossover and mutation, offspring chromosomes are added
to the population, evaluated (as specified in Section 6), and
the least-fit chromosomes are discarded to bring the popula-
tion back to its original size. This completes one generation
of the GA. This process is repeated for a predetermined
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time limit (see Section 7), and the most-fit chromosome is
returned as the solution.

5.6.3 Differences between MO-EC and EO-MC

The genetic algorithm is versatile because its intelligence
lying in how solutions are evaluated and ranked. Therefore
the only differences between MO-EC and EO-MC are the
different Min-Min Balance seeds used and how the chromo-
somes are ranked (detailed in Section 6).

5.7 Genetic Algorithm with Local Search (GALS)
Our genetic algorithm with local search combines the popu-
lation-based global search from the GA with the local search
techniques from our Tabu Search heuristic. After both cross-
over and mutation operations are finished (as performed in
the GA), a local search is applied to the offspring chromo-
somes using the three local search operators from our Tabu
Search heuristic under the condition that an offspring chro-
mosome is at least as “good” as the worst chromosome in
the population, so as to not waste time trying to improve a
poor solution. The number of iterations of local search on
each offspring chromosome was experimentally found to
provide the best results at 200 iterations.

The differences between MO-EC and EO-MC for GALS
are the same as for the GA, and the short-hop operators
from Tabu Search (detailed in Sections 5.5 and 5.6).

6 CONSTRAINED OPTIMIZATION

6.1 Overview

The previous section described the heuristics we propose to
use for our resource allocation problem. Incorporating con-
straints into heuristics that are typically designed to opti-
mize for an unconstrained objective (e.g., Tabu Search and
GA) is a difficult problem and a research topic in itself. In
this section we present several constraint-handling methods
adapted from the literature [31], [33], [35], [41] that we use
in combination with some of the proposed heuristics. These
methods help us determine solutions that are “better” than
other alternatives over the search space examined by the
heuristics. In this section, we present the “static penalty
function,” “dynamic penalty function,” and “superiority of
feasible solutions” techniques. Details of the less-effective
“limiting the search space” technique can be found in
Appendix C, available in the online supplemental material.

6.2 Static Penalty Function

The static penalty function technique [31], [35], [41] reduces
the objective function value of infeasible solutions based on
the solution’s distance from feasibility, but still allows infea-
sible solutions to be considered when searching for an opti-
mal feasible solution. The distance from feasibility of a
solution for MO-EC is

For EO-MC, the distance from feasibility is
dy =T - V. (12)

We denote cas a constant used to control how strongly a con-
straint will be enforced. Our penalized objective function for
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MO-ECis
W —c-dy ifdsy>0
Ve = {qr if dy < 0. .
Our penalized objective function for EO-MC is
_ ¢—c-dy ifdy>0
Ve = {¢ if dy <0. (D

When d; or dy are greater than zero, it indicates that the
constraint has not been met. We then penalize the objective
functions (, or y,) by subtracting a weighted value of
the distance from feasibility. A high value of the coefficient ¢
(i.e., high penalty for an infeasible solution) can produce
low quality solutions by restricting exploration of the infea-
sible region. However, ¢ must be large enough that a feasi-
ble solution is found. In our experiments, the best results
were obtained when setting c to 2.

When dy or dy are less than or equal to zero it indicates
the constraint has been met. Solutions are not rewarded
when d, or dy are less than zero, as all that matters is the
constraint is not violated. Heuristics incorporating the static
penalty function return the best solution encountered that
meets the constraint.

6.3 Dynamic Penalty Function

The static penalty function has a primary deficiency in that
solutions obtained greatly depend on the penalty weight c,
and a “good” value for ¢ will vary depending on the heuris-
tic used and even from iteration to iteration within a
heuristic. A dynamic penalty function [35], [41] uses knowl-
edge of the current search state to guide the search along
the boundary of feasibility where the optimal solution is
likely to occur. For evolutionary algorithms (e.g., GA and
GALS), this is done by adjusting the penalty weight to guide
the search in such a way that the population has an equal
number of feasible and infeasible solutions. We set the pen-
alty weight (c) to 2, and at the end of each generation of the
GA or GALS, the penalty weight is increased by a small
amount (0.01) if less than half of the population are feasible
solutions or decreased by a small amount (0.01) if at least
half of the population are feasible solutions. For Tabu
Search, the penalty weight is increased by 0.01 at the end of
an iteration if the solution is infeasible or decreased by 0.01
if feasible. Heuristics incorporating the dynamic penalty
function return the best solution encountered that meets
the constraint.

6.4 Superiority of Feasible Solutions

By adopting the rule that any feasible solution is better
than any infeasible solution [33], it is possible to avoid
experimentally tuning penalty parameters. Our heuristics
use this method in the following way: (1) any feasible solu-
tion is better than any infeasible solution, (2) when two
infeasible solutions are compared, the one with the small-
est distance from feasibility (see Equations (11) and (12)) is
considered better, and (3) when two feasible solutions are
compared, the one with the better objective function value
is considered better.
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Fig. 1. Comparison of constrained optimization techniques for MO-EC
with Tabu Search, GALS, and GA (25 node system, 458 total cores, and
10,000 tasks). The system deadline was set to 15,500 seconds, the
energy budget was set to 58 MJ, and the energy-robustness constraint
was set to 90 percent.

7 RESULTS

We consider two different simulation sizes in our simulation
study. The small simulation size consists of 25 compute
nodes (N), based on 25 different servers listed in the SPECpo-
wer_ssj2008 results [36], and 10,000 tasks. The large simula-
tion size consists of 250 compute nodes and 100,000 tasks. In
Appendix A, available in the online supplemental material,
we provide data collected from SPECpower ssj2008, give
details on how we use this data for our system parameters,
provide information on how we obtain our voltage/fre-
quency values for P-states, and workload generation details.

We conducted simulations to find a balance of short-hops
and long-hops in Tabu Search (see Appendix B, available in
the online supplemental material), compare the different
heuristics using our constrained optimization techniques
(Fig. 1), demonstrate the effectiveness of each heuristic at
handling various degrees of difficulty to meet the deadline
and energy budget (Figs. 2 and 3), analyze the trends on the
large simulation size compared to the small simulation size
(Figs. 4 and 5), and perform a sensitivity analysis of our heu-
ristics across environments of varying heterogeneity (Fig. 6).
Results in this section show the mean and 95 percent confi-
dence interval error bars of 96 trials, with the means and
variances for task execution times varying between trials.
These trials simulate numerous diverse heterogeneous
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workload/system environments. For the sake of brevity, we
do not include results for the Min-Energy or Min-Min P,
and P, heuristics as they performed poorly by themselves
but were found useful as seeds in the GA, GALS, and Tabu
Search heuristics. Unless otherwise stated, for experiments
considering the small simulation size, the system deadline
(8) was set to 15,500 seconds, the energy budget (A) was set
to 58 megajoules (M]). For the large simulation size, the sys-
tem deadline was set to 13,500 seconds, the energy budget
was set to 580 M]J. In both cases, the energy/makespan-
robustness constraints (7 and I') were set to 90 percent.

Fig. 1 compares the different methods of constrained
optimization for Tabu Search, GA, and GALS for the MO-
EC problem using the small simulation size. Heuristics are
terminated after six hours of heuristic execution time. The
heuristics show similar trends for the methods of con-
strained optimization. All heuristics and methods of con-
strained optimization produced solutions that met the
energy-robustness constraint. The dynamic and static pen-
alty functions can sometimes prefer infeasible solutions
with a large objective value over feasible solutions with a
smaller objective value, based on the relative value of ¥
and the weighted distance from feasibility. This can help
the heuristics obtain a better objective value by allowing
exploration into the infeasible region and guiding the
search towards a better feasible solution in the end. The
“superiority of feasible solutions” and “limiting the search
space” techniques always prefer feasible solutions over
infeasible ones, hindering the ability of the heuristics to
accept high makespan-robustness solutions that may barely
violate the energy-robustness constraint and eventually
guide the heuristics to better feasible solutions, which led to
worse results than the penalty function techniques.

The static penalty function must have a high enough pen-
alty weight so that a feasible solution is found, but small
enough such that the heuristics sometimes allow infeasible
solutions to be accepted. We experimented with setting ¢
equal to 0.5, 1, 2, and 5, and found the best results when set-
ting c equal to 2, which allowed the heuristics to accept some
infeasible solutions but to mostly prefer feasible ones.
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Fig. 2. Varying the energy budget for MO-EC: (a) makespan-robustness, and (b) energy-robustness (25 node system, 458 total cores, and 10,000
tasks). The system deadline was set to 15,500 seconds, the energy-robustness constraint was set to 90 percent. The heuristics were terminated

after 6 hours of execution time.
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Fig. 3. Varying the system deadline for EO-MC: (a) energy-robustness, and (b) makespan-robustness (25 node system, 458 total cores, and 10,000
tasks). The energy budget was set to 58 MJ and the makespan-robustness constraint was set to 90 percent. The heuristics were terminated after six

hours of execution time.

Compared to the static penalty function, the dynamic pen-
alty function is able to fine tune the penalty weight over the
course of the search by adapting the penalty weight after
each iteration of Tabu Search or generation of GALS and GA,
resulting in better solutions than the static penalty function.

The “limiting the search space” technique is the same
as the “superiority of feasible solutions” for Tabu Search,
as Tabu Search starts with a Min-Min Balance solution
that is feasible for the deadline and energy budget con-
sidered. However, for GALS and GA, the “limiting the
search space” technique performs the worst as the initial
population is generated with only feasible solutions,
causing the chromosomes to lack diversity and hindering
the benefits of the crossover operator. The results for EO-
MC show the same trends as Fig. 1 across constrained
optimization techniques. Because the dynamic penalty
function performed best, we use this as our method of
constrained optimization for other experiments.

Figs. 2 and 3 show the results of the heuristics at han-
dling different values for the energy budget (A) and dead-
line (8) for the small simulation size. Fig. 2 shows the results
of the heuristics when maximizing makespan-robustness
(Fig. 2a) with an energy-robustness constraint (Fig. 2b)
when varying the energy budget (i.e., varying the difficulty
of meeting the energy constraint). Fig. 3 shows the results of
the heuristics when maximizing energy-robustness (Fig. 3a)
with a makespan-robustness constraint (Fig. 3b) when vary-
ing the deadline. The energy-robustness and makespan-
robustness constraints (n and I') were set to 90 percent.

For the MO-EC problem, Fig. 2 shows how well the
heuristics perform at exploiting the trade-off between
energy-robustness and makespan-robustness to sacrifice
the probability of meeting the deadline (makespan-
robustness) to meet the energy constraint. For this experi-
ment, each of the 96 trials were executed with the dead-
line set to 15,500 seconds and the energy budget set to a
value between 50 MJ and 64 MJ in 0.5 MJ increments.
Each trial of the Tabu Search, GALS, and GA heuristics
was terminated after six hours. Within this time, Fig. 2a
shows that Tabu Search is able to obtain the best

solutions at all energy budgets. Tabu Search and GALS
are able to outperform GA in the allotted time as the
intelligent local search operators used in Tabu Search
and GALS are able to quickly identify moves that
improve the solution, whereas the GA must rely on ran-
dom genetic search which can go through several genera-
tions before finding better solutions. Tabu Search focuses
on performing many short-hops on one solution and
escaping local optima through long-hops, which outper-
forms the GALS that performs fewer short-hops (i.e., iter-
ations of local search) on many different solutions over
the course of the search and relies on random crossover
and mutation to escape local optima.

We can observe that Tabu Search is able to achieve non-
zero makespan-robustness and meet the energy-robustness
contraint at energy budgets as small as 51 MJ, due to the
local search operators intelligently assigning tasks to exe-
cute in low-power P-states on high-ranked nodes. In Fig. 2b,
at energy budgets up to 53 M] for GALS and 55 MJ for GA,
GALS and GA return solutions of 1.0 energy-robustness
(feasible) but 0.0 makespan-robustness. At these tight
energy budgets, the Min-Min and Min-Min Balance seeds
and randomly generated solutions of GALS and GA have
very poor energy-robustness and are therefore highly
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Fig. 4. Comparison of Tabu Search, GA, and GALS heuristics over 72
hours of execution time for MO-EC using the large simulation size (250
nodes, 4,580 total cores, and 100,000 tasks). The system deadline was
set to 13,500 seconds, the energy budget was set to 580 MJ, and
energy-robustness constraint was set to 90 percent.
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Fig. 5. Progress of Tabu Search, GALS, and GA for MO-EC over 72 hours of heuristic execution time for the (a) small simulation size (25 nodes, 458
total cores, 10,000 tasks), and (b) large simulation size (250 nodes, 4,580 total cores, and 100,000 tasks). For the small simulation size, the system
deadline was set to 15,500 seconds, the energy budget was set to 58 MJ, and the energy-robustness constraint was set to 90 percent. For the large
simulation size, the system deadline was set to 13,500 seconds, the energy budget was set to 580 MJ, and energy-robustness constraint was set to

90 percent.

penalized, so the population quickly converges to solutions
similar to the Min-Energy solution that has 1.0 energy-
robustness and poor makespan-robustness. Also, when the
energy budget is set to greater than approximately 60 MJ,
the energy-robustness exceeds our set constraint of 0.9 for
the GA and Min-Min Balance heuristics, indicating that
when given a large energy budget, GA and Min-Min Bal-
ance are able to achieve feasible solutions but unable to use
all available energy to increase makespan-robustness as
desired. This is because the GA and Min-Min Balance heu-
ristics do not incorporate the P-state reassignment operator
that greedily assigns tasks to run in faster P-states until all
available energy is used (e.g., until energy-robustness
equals the constraint of 0.9). At higher energy budget values
(over 60 MJ), GALS and Tabu Search have similar perfor-
mance because the energy budget becomes easy enough
that the energy-robustness constraint can be achieved when
most tasks are running in the highest-power P-state (P0)
(through the P-state reassignment operator for MO-EC), thus
both heuristics can attain high makespan-robustness values
while meeting the energy-robustness constraint.

Fig. 3 compares results of heuristics for EO-MC when
varying the deadline (i.e., making the makespan-robustness
constraint more or less difficult to attain). For this experi-
ment, the energy budget is fixed at 58 MJ and system dead-
line is varied between 13,500 and 17,000 seconds. Again, we
can observe that Tabu Search and GALS outperform the
GA, indicating the significance of the local search operators
for the smaller simulation size. Tabu Search outperforms
GALS at most deadline values, as the benefit associated
with improving one solution through using many short-
hops and escaping local optima with long-hops exceeds the
benefit associated with performing fewer local search itera-
tions on numerous solutions and relying on random cross-
over and mutation to escape local optima, as in GALS. At
higher deadline values (over 16,200 s), GALS and Tabu
Search have similar performance because the deadline
becomes easy enough that the makespan-robustness con-
straint can be achieved when most tasks are running in the
lowest-power P-states (through the P-state reassignment
operator for EO-MC), thus both heuristics can attain high
energy-robustness values while meeting the makespan-
robustness constraint.

The 25 node (458 total cores) platform is relatively small
for a modern HPC system, so we also experimented with
our heuristics on a larger simulated platform consisting of
250 nodes (4,580 total cores) and 100,000 tasks. Fig. 4 com-
pares results of Tabu Search and GALS over 72 hours of
heuristic execution time for MO-EC. With the smaller simu-
lation size of only 25 nodes and 10,000 tasks, Tabu Search
often achieved the best results (see Figs. 1, 2, 3). However,
Fig. 4 shows that for 12 hours of heuristic execution time for
the larger simulation size, GA outperforms both Tabu
Search and GALS, and GALS outperforms Tabu Search. The
local search operators used by Tabu Search and GALS are
not as effective on the large simulation size, and there are
two primary reasons: (1) the local search operators used by
Tabu Search and GALS take considerably longer to execute
when having to examine considerably more cores and tasks
to intelligently swap and reassign tasks and P-states, and (2)
local search operators only change one task and/or P-state
assignment each, which can result in smallimprovements
per iteration when considering 100,000 tasks instead of only
10,000 tasks. Genetic search (crossover and mutation) can
change numerous task and P-state assignments per genera-
tion, which can lead to large improvements early in the heu-
ristic. Over time, however, the randomness of the genetic
search becomes less effective and improvements become
incremental, leading the intelligent choices made by the
Tabu Search and GALS to outperform GA. To help illustrate

1.0

@ Tabu Search|
E3GALS
[ GA

0.8

0.6

makespan-robustness

0.4

CaoV environment

low TMA environment

high TMA environment

Fig. 6. Comparison of Tabu Search, GALS, and GA across heteroge-
neous environments with varying TMA for MO-EC using the small simu-
lation size (25 nodes, 458 total cores, and 10,000 tasks). The system
deadline was set to 15,500 seconds, the energy budget was set to
58 MJ, and the energy-robustness constraint was set to 90 percent.
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these observations, Fig. 5 compares the progress of one trial
of Tabu Search, GALS, and GA over 72 hours of heuristic
execution time using the small simulation size (Fig. 5a) and
large simulation size (Fig. 5b). On the small simulation size
(Fig. 5a), Tabu Search is able to perform approximately
350,000 total iterations of local search over the 72 hours of
heuristic execution time, however on the large simulation
size (Fig. 5b) Tabu Search is only able to perform about
30,000 total iterations of local search, due to the increased
time it takes for the short-hop operators to identify intelli-
gent assignments. Fig. 5a shows Tabu Search being very
effective on the small simulation size compared to GALS
and GA, as the intelligent short-hop operators are fast and
can focus on improving one solution until a long-hop is per-
formed (the sharp decreases in makespan-robustness). The
genetic search of GALS and GA leads to large improve-
ments early, but the genetic search becomes less effective as
the population becomes less diverse over time. GALS is
able to perform few local search iterations on many different
solutions, leading to a gradual improvement over time.
Fig. 5b shows that with the large simulation size, Tabu
Search does not perform any long-hops over 72 hours of
heuristic execution time, meaning that the local search has
yet to meet the termination criteria. We can see that the
genetic search of GALS and GA is able to perform large
jumps to better solutions early compared to the gradual
improvement of Tabu Search due to crossover being able to
change numerous assignments per generation through ran-
dom recombination of chromosomes. The genetic search
becomes less effective as the population converges, and
Tabu Search obtains similar results to that of GALS after
approximately 24 hours.

Fig. 6 compares the makespan-robustness results for
MO-EC using our Tabu Search, GALS, and GA heuristics
when the computing environment has high and low het-
erogeneity to evaluate the effectiveness of our heuristics
across different heterogeneous environments. One mea-
sure for characterizing the heterogeneity of a computing
environment is fask machine affinity (TMA) [1]. TMA
captures the degree to which some tasks are better suited
to run on specific machines. In an environment with low
TMA, typically a node that is faster for one task is typi-
cally faster for all tasks. In contrast, an environment with
high TMA contains nodes that are better-suited for some
tasks, but other machines are better-suited for different
tasks. We use methods detailed in [19] to modify the
mean task execution time values from the CoV method
(Appendix A, available in the online supplemental mate-
rial) to create high and low TMA environments.

Fig. 6 shows all heuristics performing better on environ-
ments with high TMA than low TMA. In the environment
with low TMA, all tasks execute the fastest on cores in the
fastest node, leaving many tasks executing on subpar nodes
when the workload is load balanced. In the high TMA envi-
ronment, different tasks execute fastest on different nodes,
leaving many tasks assigned to their fastest nodes when the
workload is load balanced. We can also observe that in the
high TMA environment, the makespan-robustness of Tabu
Search and GALS exceed the performance of the GA by far
more than in the low TMA environment. This is because the
task swap and task reassignment local search operators
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employed by Tabu Search and GALS move tasks onto nodes
that are better according to the mean rank matrix. In a high
TMA environment, this makes the task swap and task reas-
signment operators very effective because placing tasks on
their best-ranked nodes often leads to natural load balanc-
ing, giving high makespan-robustness. In the heuristic exe-
cution time given, Tabu Search and GALS greatly
outperform the random combinations produced by GA. In
the low TMA environment, placing tasks on better-ranked
nodes does not load balance, leading to Tabu Search and
GALS giving performance closer to that of the GA.

In summary, we found that the dynamic penalty function
served as the most-effective constrained optimization tech-
nique (Fig. 1). Also, our Tabu Search heuristic gave the best
results among the heuristics for the small simulation size
(Figs. 2 and 3) and the large simulation size when given at
least 24 hours to execute (Figs. 4 and 5). Tabu Search was
also able to provide the best results in environments with
low and high heterogeneity (Fig. 6).

8 CONCLUSIONS

In this paper, we design energy-aware resource allocation
techniques to address two challenges that appear in today’s
data centers: (a) trying to optimize the makespan when sub-
ject to an energy budget constraint, and (b) trying to opti-
mize energy consumption when subject to a makespan
deadline. This problem becomes more complex when the
execution times are modeled stochastically rather than
deterministically. We develop probabilistic measures for
both makespan and energy consumption, which we call
makespan-robustness and energy-robustness. Makespan-
robustness is the probability of meeting a makespan dead-
line, and energy-robustness is the probability of meeting an
energy budget.

We approach this problem through the design of energy-
aware resource allocation techniques incorporated with
methods of constrained optimization from the literature. We
compared the methods of constrained optimization using
our Tabu Search, GALS, and GA heuristics. For a small simu-
lation size, the intelligent search techniques of Tabu Search in
combination with the dynamic penalty function outper-
formed the other resource allocation methods within the
computation time given to execute the heuristics. For the
large simulation size, however, the computation time over-
head of our intelligent local search operators caused GA and
GALS to outperform Tabu Search unless Tabu Search is
given at least 24 hours to execute. The comparison of heuris-
tics and constrained optimization techniques revealed great
potential for our Tabu Search and GALS heuristics when
combined with the dynamic penalty function for managing
compute resources in an energy-aware manner for both
deadline-constrained and energy-constrained systems.

For future work, we would like to consider workloads
that consist of mostly compute-intensive or mostly mem-
ory-intensive tasks, which may require different techniques
in addition to DVFS (such as consolidation) to reduce
energy consumption. In addition, as multicore processors
increase in number of cores, the effects of shared caches can
have a pronounced impact on the execution time (and
energy consumption) of tasks. Designing models and
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resource allocation techniques that account for these effects
would be a necessity.

We also would like to consider tasks that have dependen-
cies (which would require modeling precedence constraints
and the numerous components of communication times).
Designing new heuristics to adhere to the precedence con-
straints would be required. It is likely that the execution
times of the new heuristics would be longer than for the
independent task case. Because of the uncertainties in both
execution time and communications, the complexity of the
problem will increase as well as the design of simulations
used to evaluate the new techniques.

ACKNOWLEDGMENTS

The authors thank T. Hansen and M. Amini Salehi for their
valuable comments on this work. This research was sup-
ported by the National Science Foundation (NSF) under
grant numbers CNS-0615170, CNS-0905399, and CCF-
1302693, and by the Colorado State University George T.
Abell Endowment. This research used the CSU ISTeC Cray
System supported by NSF Grant CNS-0923386. A prelimi-
nary version of portions of this material appear in the 2011
ACS/IEEE International Conference on Computer Systems
and Applications [3] and the 2013 Workshop on Power and
Energy Aspects of Computation [27].

REFERENCES

[11 A. M. Al-Qawasmeh, A. A. Maciejewski, R. G. Roberts, and H. J.
Siegel, “Characterizing task-machine affinity in heterogeneous
computing environments,” in Proc. 20th Heterogeneity Comput.
Workshop, May 2011, pp. 33—43.

[2] S. Ali, A. A. Maciejewski, and H. J. Siegel, “Perspectives on robust
resource allocation for heterogeneous parallel systems,” in Hand-
book of Parallel Computing: Models, Algorithms, and Applications, S.
Rajasekaran, and J. Reif, Eds., Boca Raton, FL, USA: Chapman &
Hall/CRC Press, pp. 41.1-41.30.

[3] J. Apodaca, D. Young, L. Briceno, J. Smith, S. Pasricha, A. A.
Maciejewski, H. J. Siegel, S. Bahirat, B. Khemka, A. Ramirez, and
Y. Zou, “Stochastically robust static resource allocation for energy
minimization with a makespan constraint in a heterogeneous
computing environment,” in Proc. 9th ACS/IEEE Int. Conf. Comput.
Syst. Appl., Dec. 2011, pp. 22-31.

[4] T.D.Braun, H.]J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hens-
gen, M. Maheswaran, A. I. Reuther, ]. P. Robertson, M. D. Theys,
and B. Yao, “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed com-
puting systems,” |. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810-
837, Jun. 2001.

[5] L. Briceno, H.J. Siegel, A. A. Maciejewski, M. Oltikar, J. Brateman,
J. White, J. Martin, and K. Knapp, “Heuristics for robust resource
allocation of satellite weather data processing onto a heteroge-
neous parallel system,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 11, pp. 1780-1787, Nov. 2011.

[6] L. Briceno, J. Smith, H. J. Siegel, A. A. Maciejewski, P. Maxwell, R.
Wakefield, A. Al-Qawasmeh, R. C. Chiang, and J. Li, “Robust
static resource allocation of DAGs in a heterogeneous multicore
system,” J. Parallel Distrib. Comput., vol. 73, no. 12, pp. 1705-1717,
Dec. 2013.

[7]1 H.]J.Choi, D. O. Son, S. G. Kang, J]. M. Kim, H.-H. Lee, and C. H.
Kim, “An efficient scheduling scheme using estimated execution
time for heterogeneous computing systems,” J. Supercomput., vol.
65, no. 2, pp. 886902, Aug. 2013.

[8] F. M. Ciorba, T. Hansen, S. Srivastava, I. Banicescu, A. A. Macie-
jewski, and H. J. Siegel, “A combined dual-stage framework for
robust scheduling of scientific applications in heterogeneous envi-
ronments with uncertain availability,” in Proc. 21st Heterogeneity
Comput. Workshop, May 2012, pp. 187-200.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

2803

CSU Information Science and Technology Center. (2013). iSTeC
Cray High Performance Computing (HPC) System [Online].
Available: http:/ /istec.colostate.edu/istec_cray

A. Dogan and F. Ozgliner, “Genetic algorithm based scheduling
of meta-tasks with stochastic execution times in heterogeneous
computing systems,” Cluster Comput., vol. 7, no. 2, pp. 177-190,
Apr. 2004.

F. Glover, “Tabu search, part I,” ORSA J. Comput., vol. 1, pp. 190-
206, 1989.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIG-
COMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68-73, Jan. 2009.
J. L. Hennessy, and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 5th ed. San Francisco, CA, USA: Morgan
Kaufmann, 2011.

Hewlett-Packard Corporation, Intel Corporation, Microsoft Cor-
poration, Phoenix Technologies Ltd., and Toshiba Corporation
Std. (2011). Adv. Configuration and Power Interface Specification, rev.
5.0 [Online]. Available: http:/ /www.acpi.info

J. L. Hodges and E. L. Lehmann, Basic Concepts of Probability and
Statistics. Philadelphia, PA, USA: SIAM, 2005.

O. H. Ibarra, and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” J. Assoc. Comput.
Mach., vol. 24, no. 2, pp. 280-289, Apr. 1977.

M. A. Iverson, F. Ozgtiner, and L. Potter, “Statistical prediction of
task execution times through analytic benchmarking for schedul-
ing in a heterogeneous environment,” IEEE Trans. Comput.,
vol. 48, no. 12, pp. 1374-1379, Dec. 1999.

Y.-S. Kee, K. Yocum, A. A. Chien, and H. Casanova, “Robust
resource allocation for large-scale distributed shared resource
environments,” in Proc. 15th Int. Symp. High Performance Distrib-
uted Comput., Jun. 2006, pp. 341-342.

B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel,
G. A. Koenig, S. Powers, M. M. Hilton, R. Rambharos, and S.
Poole, “Utility maximizing dynamic resource management in an
oversubscribed ~energy-constrained heterogeneous computing
system,” Elsevier ]. Sustainable Comput.: Informat. Syst., accepted to
appear.

A. Khokhar, V. Prasanna, M. Shaaban, and C.-L. Wang,
“Heterogeneous computing: Challenges and opportunities,” IEEE
Comput., vol. 26, no. 6, pp. 18-27, Jun. 1993.

S.-G. Kim, C. Choi, H. Eom, H. Y. Yeom, and H. Byun, “Energy-
centric DVFS controlling method for multi-core platforms,”
in Proc. SC Companion: High Performance Comput., Netwo. Storage
Anal., Jun. 2012, pp. 685-690.

J. Koomey. (2011). Growth in data center electricity use 2005 to
2010, Analytics Press, Tech. Rep. [Online]. Available: http://
www.analyticspress.com/datacenters.html

D. Li and J. Wu, “Energy-aware scheduling for frame-based tasks
on heterogeneous multiprocessor platforms,” in Proc. 41st Int.
Conf. Parallel Process., Sep. 2012, pp. 430-439.

Y. A. Li, ]. K. Antonio, H. J. Siegel, M. Tan, and D. W. Watson,
“Determining the execution time distribution for a data parallel
program in a heterogeneous computing environment,” J. Parallel
Distrib. Comput., vol. 44, no. 1, pp. 33-52, Jul. 1997.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heteroge-
neous computing systems,” J. Parallel Distrib. Comput., vol. 59,
no. 2, pp- 107-131, Nov. 1999.

D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminat-
ing server idle power,” in Proc. Int. Conf. Archit. Support Program.
Language Operating Syst., Mar. 2009, pp. 205-216.

M. Oxley, S. Pasricha, H. J. Siegel, and A. A. Maciejewski, “Energy
and deadline constrained robust stochastic static resource
allocation,” in Proc. Workshop Power Emnergy Aspects Comput.,
Sep. 2013, p. 10.

J. F. Pineau, Y. Robert, and F. Vivien, “Energy-aware scheduling
of bag-of-tasks applications on master-worker platforms,” Concur-
rency Comput.: Practice Experience, vol. 23, no. 2, pp. 145-157,
Feb. 2011.

F. Pinel, J. Pecero, S. Khan, and P. Bouvry, “Energy-efficient
scheduling on milliclusters with performance constraints,” in
Proc. IEEE/ACM Int. Conf. Green Comput. Commun., Aug. 2011,
pp- 44-49.

F. Pop, C. Dobre, and V. Cristea, “Genetic algorithm for DAG
scheduling in grid environments,” in Proc. 5th IEEE Int. Conf.
Intell. Comput. Commun. Process., Aug. 2009, pp. 299-305.



2804

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.10, OCTOBER 2015

D. Powell and M. M. Skolnick, “Using genetic algorithms in engi-
neering design optimization with non-linear constraints,” in Proc.
5th Int. Conf. Genetic Algorithms, 1993, pp. 424—431.

G. Ritchie and J. Levine, “A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments,”
in Proc. 3rd Workshop UK Planning Scheduling Special Interest Group,
Dec. 2004.

H.-P. Schwefel, Evolution and Optimum Seeking. New York, NY,
USA: Wiley Interscience, 1995.

V. Shestak, ]J. Smith, A. A. Maciejewski, and H. ]. Siegel,
“Stochastic robustness metric and its use for static resource
allocations,” J. Parallel Distrib. Comput., vol. 68, no. 8, pp. 1157-
1173, Aug. 2008.

A. E. Smith and D. W. Coit, “Constraint-handling techniques—
penalty functions,” in Handbook of Evolutionary Computation,
T. Back, D. Fogel, and Z. Michalewicz, Eds., Bristol, U.K.: Inst.
Phy. Publishing and Oxford Univ. Press, 1997, ch. C5.2.

Standard Performance Evaluation Corporation (SPEC). (2008).
SPECpower_ssj2008 [Online]. Available: http://www.spec.org/
power_ssj2008

W. Sun, and T. Sugawara, “Heuristics and evaluations of energy-
aware task mapping on heterogeneous multiprocessor platforms,”
in Proc. Adv. Parallel Distrib. Comput. Models, May 2011, pp. 599-
607.

D. Whitley, “The GENITOR algorithm and selective pressure:
Why rank-based allocation of reproductive trials is best,” in Proc.
3rd Int. Conf. Genetic Algorithms, Jun. 1989, pp. 116-121.

Y. Wong, R. Goh, S. Kuo, and M. Low, “A Tabu Search for the het-
erogeneous DAG scheduling problem,” in Proc. 15th Int. Conf. Par-
allel Distrib. Syst., Dec. 2009, pp. 663—670.

D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and contention-
aware multi-resource reservation,” Cluster Comput., vol. 4, no. 2,
pp- 95-107, Apr. 2001.

O. Yeniay, “Penalty function methods for constrained optimiza-
tion with genetic algorithms,” Math. Comput. Appl., vol. 10, no. 1,
pp- 45-56, Jan. 2005.

B. D. Young, ]. Apodaca, L. D. Briceno, J. Smith, S. Pasricha, A. A.
Maciejewski, H. J. Siegel, B. Khemka, S. Bahirat, A. Ramirez, and
Y. Zou, “Deadline and energy constrained dynamic resource allo-
cation in a heterogeneous computing environment,” J. Supercom-
put., vol. 63, no. 2, pp. 326-347, Feb. 2013.

W. Yuan, and K. Nahrstedt, “Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 149-163, Dec. 2003.

Mark A. Oxley received the BS degree in com-
puter engineering from the University of Wyom-
ing. He is working toward the PhD degree and a
research assistant in the Electrical and Computer
Engineering Department at Colorado State Uni-
versity. His research interests include energy-
aware, thermal-aware, and robust resource man-
agement techniques.

Sudeep Pasricha received the BE degree in
electronics and communications from Delhi Insti-
tute of Technology in 2000, and the MS and PhD
degrees in computer science from the University
of California, Irvine, in 2005 and 2008, respec-
tively. He is currently an associate professor in
the Department of Electrical and Computer Engi-
neering and also the Department of Computer
Science at Colorado State University. He is a
senior member of the IEEE and ACM.

Anthony A. Maciejewski received the BSEE,
MS, and PhD degrees from the Ohio State Uni-
versity in 1982, 1984, and 1987, respectively.
From 1988 to 2001, he was a professor of electri-
cal and computer engineering at Purdue Univer-
sity, West Lafayette. He is currently a professor
and the department head of Electrical and Com-
puter Engineering at Colorado State University.
He is a fellow of the IEEE. A complete vita is avail-
able at: http://www.engr.colostate.edu/ ~aam.

Howard Jay Siegel received the BS degree from
MIT, and the MSE and PhD degrees from Prince-
ton University. He was appointed the Abell
Endowed chair distinguished professor of Electri-
cal and Computer Engineering at Colorado State
University in 2001, where he is also a professor
of computer science. From 1976 to 2001, he was
a professor at Purdue University. He is a fellow of
the IEEE and ACM.

Jonathan Apodaca is an undergraduate study-
ing computer science at Colorado State Univer-
sity. His research interests include resource
management in heterogeneous computing sys-
tems.

Dalton Young received the MS degree in electrical engineering from
the University of Kentucky in 2009. He is currently working toward the
PhD degree in the Electrical and Computer Engineering Department
at Colorado State University.

Luis D. Briceno received the BS degree in elec-
trical and electronic engineering from the Univer-
sity of Costa Rica, and the PhD degree in
electrical and computer engineering at Colorado
State University. He is currently a component
design engineer at Intel. His research interests
include heterogeneous parallel and distributed
computing.

Jay Smith received the PhD degree in electrical
and computer engineering from Colorado State
University in 2008. He co-founded Lagrange Sys-
tems in 2012, and currently serves as the chief
technical officer of the company. He has coau-
thored more than 30 peer reviewed articles in the
area of parallel and distributed computing sys-
tems. In addition to his academic publications,
while at I.B.M., he received more than 20 patents
and numerous corporate awards for the quality of
those patents. He left 1.B.M. as a master inventor
in 2008 to focus on high-performance computing at DigitalGlobe. There,
he pioneered the application of GPGPU processing within DigitalGlobe.
In addition to his position at Lagrange Systems, he serves as a research
faculty member in the Electrical and Computer Engineering Department
at Colorado State University. His research interests include high-perfor-
mance computing and resource management. He is a member of both
the IEEE and the ACM.



Shirish Bahirat received the the MS degree in
electrical engineering from the University of Colo-
rado, and the PhD degree in electrical and com-
puter engineering and MBA from Colorado State
University. He also possesses extensive experi-
ence in leading product design and development
efforts for global high-tech companies creating
leading-edge technology solutions. His research
interests include multicore SOC and solid state
memory technology.

Bhavesh Khemka received the BE degree in
electrical and electronics engineering from Hin-
dustan College of Engineering affiliated with
Anna University, India, in 2009, and the PhD
degree in electrical and computer engineering
(ECE) from Colorado State University (CSU) in
2014. He is a postdoctoral research scholar in
the Electrical and Computer Engineering (ECE)
Department at Colorado State University (CSU).
His research interests include fault-tolerant,
energy-aware, and robust resource management

in heterogeneous and distributed computing environments.

OXLEY ET AL.: MAKESPAN AND ENERGY ROBUST STOCHASTIC STATIC RESOURCE ALLOCATION OF A BAG-OF-TASKS TOA... 2805

Adrian Ramirez received the BS degree in elec-
trical engineering at Texas A&M University-
Kingsville in 2007, and the MS degree in electri-
cal engineering with a focus in robotics at Colo-
rado State University in 2010. He is currently an
Electrical Development Engineer in R&D at Covi-
dien (scheduled to be acquired by Medtronic in
2015) where he specializes in battery manage-
ment and switch-mode converters.

Yong Zou received the MS degree in software
engineering from the University of Science and
Technology of China. He is working toward the
PhD degree in the Electrical and Computer Engi-
neering Department at Colorado State University.
His current research interests are in the areas of
fault tolerance in network-on-chip, computer
architecture, and embedded system design.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


