
ITERATIVE ALGORITHMS FOR STOCHASTICALLY ROBUST STATIC
RESOURCE ALLOCATION IN PERIODIC SENSOR DRIVEN CLUSTERS

Vladimir Shestak1,3, Jay Smith3, Anthony A. Maciejewski1, and Howard Jay Siegel 1,2

1Electrical and Computer Engineering Department
2Computer Science Department,

Colorado State University, Fort Collins, CO 80523–1373,
Email:{shestak, hj, aam}@engr.colostate.edu

3IBM, 6300 Diagonal Highway Boulder, CO 80301
Email: {vshestak, bigfun }@us.ibm.com

ABSTRACT
This research investigates the problem of robust static re-
source allocation for a large class of clusters processing
periodically updated data sets under an imposed quality of
service constraint. The target hardware platform consists of
a number of sensors generating input for heterogeneous ap-
plications continuously executing on a set of heterogeneous
compute nodes. In practice such systems are expected to
function in a physical environment replete with uncertainty,
which causes the amount of processing required over time
to fluctuate substantially. Determining a resource alloca-
tion that accounts for this uncertainty in a way that can pro-
vide a probabilistic guarantee that a given level of QoS is
achieved is an important research problem. The stochastic
robustness metric is based on a mathematical model where
the relationship between uncertainty in system parameters
and its impact on system performance is described stochas-
tically. The established metric is then used in the design
of several resource allocation algorithms utilizing evolu-
tionary approaches. The performance results and compari-
son analysis are presented for a simulated environment that
replicates a heterogeneous cluster-based processing center
for a radar system.

KEYWORDS
Heterogeneous systems, resource allocation, stochastic op-
timization, iterative algorithms, computer clusters.

1 Introduction

This paper investigates the problem of robust resource al-
location for a large class of heterogeneous cluster (HC)
systems operating on periodically updated data sets. The
application domains include surveillance for homeland se-
curity, monitoring vital signs of medical patients, and au-
tomatic target recognition systems. Fig. 1 schematically
illustrates such systems where sensors (e.g., radar, sonar,
video camera) produce data sets with a constant period of
Λ time units. Due to the changing physical world, these
periodic data sets typically vary in such parameters as the
number of observed objects present in the radar scan and
signal-to-noise ratio. Suppose that each input data set must

∗This research was supported by NSF under grant No. CNS-0615170,
by the Colorado State University Center for Robustness in Computer Sys-
tems (funded by the Colorado Commission on Higher Education Technol-
ogy Advancement Group through the Colorado Institute of Technology),
and by the Colorado State University George T. Abell Endowment.

compute node M
1Ma Mn Ma

 time unitssensors
data set i+1 data set i

processing cluster

compute node M
11a 1n M

a

Figure 1. Major functional units and data flow for a class
of computer clusters that operates on periodically updated
data sets.

be processed by a collection of N independent applica-
tions that can be executed in parallel in an HC system com-
posed of M compute nodes. Unpredictable changes in in-
put data sets result in variability in the execution times of
data processing applications. This makes the problem of
resource allocation (i.e., allocation of resources to applica-
tions) rather challenging, especially in situations when the
system experiences workload surges or loss of hardware re-
sources, as the total processing time for a specified percent-
age of data sets must not exceed Λ. Robust design for such
systems involves determining a resource allocation that can
account for uncertainty in application execution times in a
way that enables a probabilistic guarantee for a given per-
centage. Furthermore, in many systems of the considered
class, it is highly desirable to minimize the period Λ be-
tween subsequent data updates, e.g., more frequent radar
scans are needed to identify an approaching target in mili-
tary applications.

The major contribution of this paper is the design
of resource allocation techniques based on iterative algo-
rithms [20] to address the problem of minimizing Λ while
providing a certain level of probabilistic guarantee that
the time required for a total data set processing is less
than or equal to Λ. The resource allocation problem has
been shown, in general, to be NP-complete in HC sys-
tems [6, 10, 31]. Thus, the development of heuristic tech-
niques to find near-optimal solutions is an active area of
research, e.g., [5, 13, 19, 20, 23]. The notion of stochastic
robustness, considered as a constraint in the addressed op-
timization problem, was established in [24] based on a de-

513-088 166

debbie

veloped mathematical model of this class of HC systems.
Three greedy approaches to the resource allocation prob-
lem were then designed presented in [25]. The latter study
revealed that the adopted greedy techniques turned out to
be rather time-consuming while operating in the stochas-
tic domain. As the research continued, more sophisticated
iterative algorithms were created resulting in a significant
performance improvement. These iterative techniques are
in focus in this paper.

The remainder of this work is organized in the fol-
lowing manner. Section 2 develops a model of the HC sys-
tem operating on periodic data sets, presents a quantitative
measure of the stochastic robustness of a given resource al-
location along with methods to compute it, and formulates
the performance goal. Three iterative algorithms designed
to solve the resource allocation are described in Section
4, each determining the lowest achievable value of period
Λ for the required level of stochastic robustness. The pa-
rameters of the simulation setup are discussed in Section
6 along with the simulation results and evaluation of the
heuristics’ performance. A sampling of some related work
is presented in Section 7. Section 8 concludes the paper.

2 Stochastic Robustness Framework
2.1 Definition of Stochastic Robustness

The derivation of a stochastic robustness metric for a given
HC environment requires a mathematical model that ac-
counts for uncertainty in system parameters to reasonably
predict the performance of the system. To emphasize the
distinction between the system and its mathematical model,
any new terminology related to the model will explicitly
reference the model.

For the system illustrated in Fig. 1, let nj applica-
tions assigned to compute node ηj . Let random variable
Tij denote the execution time of each individual applica-
tion aij on compute node ηj . The random variables Tij

serve as the inputs to the mathematical model that char-
acterize the uncertainty in execution time for each of the
applications in the system and will be referred to as the
uncertainty parameters. This work assumes that the dis-
tribution is known for each of the uncertainty parameters
described with a probability density function (pdf). The
above assumption can be justified by the fact that the major-
ity of production HC systems execute a certain set of data
processing applications for a substantial amount of time.
This makes it possible to accumulate enough statistics cap-
turing the behaviour of uncertainty parameters. Widely
used methods to derive pdfs from statistical data can be
found in [29]. The performance of the considered system is
measured based on the makespan value (total time required
for all applications to process a given data set) [5] achieved
by a given resource allocation, i.e., a smaller makespan
equates to better performance. The system performance ψ
referred to as the performance characteristic, is an output
of the mathematical model of the system. The functional
dependence between the uncertainty parameters and the
performance characteristic in the model can be expressed
mathematically as

ψ = max{
n1�

i=1

Ti1, ...,
nM�

i=1

TiM}. (1)

Due to its functional dependence on the uncertainty para-

meters Tij , the performance characteristic ψ is itself a ran-
dom variable.

As discussed before, once system is put into oper-
ation, the time period Λ between sequential data sets is
fixed limiting the acceptable range of possible variation
in the system performance, i.e., ψ ≤ Λ. The stochastic
robustness metric, denoted as θ, is the probability that
the performance characteristic of the system does not
exceed Λ, i.e., θ = P[ψ ≤ Λ]. For a given resource al-
location, the stochastic robustness quantitatively measures
the likelihood that the total time required to process a data
set will not exceed the period between sequential data up-
dates. Clearly, unity is the most desirable stochastic ro-
bustness metric value, i.e., there is zero probability that the
system will violate the established QoS constraint.

In the model of compute node ηj , the functional de-
pendence between the set of local uncertainty parameters
{Tij | 1 ≤ i ≤ nj} and the local performance characteristic

ψj can be stated as ψj =
nj�
i=1

Tij . Assuming no inter-

application data transfers exist among the applications aij
executing on different compute nodes, random variables
ψ1,ψ2, ...,ψM are mutually independent. As such, the sto-
chastic robustness in HC system can be found as a product
of the probabilities that execution on each compute node
satisfies the imposed Λ level. Mathematically, this is given
as

θ =
M�

j=1

P[ψj ≤ Λ]. (2)

If execution times Tij of applications mapped on a
compute node ηj are mutually independent—i.e., there are
no inter-application data transfers and no multitasking; the
latter simplifying assumption is commonly made in the lit-
erature [5, 8, 16, 19, 28]—then each multiplication term in
(2) can be computed using an (nj − 1)-fold convolution of
probability density functions fTij (ti) [17]

P[ψj ≤ Λ] =
� Λ

0
fTij (t1) ∗ ... ∗ fTnjj (tnj)dt. (3)

This research assumes that an acceptable level of sto-
chastic robustness is specified for the considered system.
Thus, the performance goal for the mapper is to find re-
source allocations for a given set of N applications on M
compute nodes that allows for the minimum period Λ be-
tween sequential data sets while maintaining a given level
of stochastic robustness θ.

2.2 Computational Methods Applied

Often in practical implementations the sample probability
mass functions (pmfs) fTij (ti) are derived from empirical
observations obtained as a result of past executions of ap-
plication ai on compute node ηj [29]. The discrete form
allows the Fast Fourier Transform (FFT) method [22] to be
used to efficiently compute the convolution integral given
in (3). A more detailed discussion about nuances related to
the FFT method applied in the given system can be found
in [24].

In contrast to convolution, which is applicable only
when the performance characteristic is a sum of indepen-
dent random variables, the bootstrap method [29] to ap-
proximate P[ψj ≤ Λ] can be applied to various forms of

167

functional dependence between local uncertainty parame-
ters Tij and the local performance characteristic ψj , mak-
ing it very useful in many practical implementations. For
example, if the execution of applications assigned to a com-
pute node is done in a parallel multitasking fashion, then
there exists a complex functional dependence between the
time required to process an application and a number of
currently executing threads, amount of CPU utilized by
each thread [23], etc.

The bootstrap approximation scheme adapted for HC
environment is described in [24]. A brief overview of the
principles the bootstrap method is based on are as fol-
lows. Let T ∗

ij denote one draw from the execution time
distribution fTij (ti). Let ψ∗

j be a bootstrap replication
whose computation is based on a known functional depen-
dence between the set of drawn T ∗

ij and ψj , i.e., ψ∗
j =

g(T ∗
1j , ..., T

∗
njj). In the bootstrap simulation step [29], B

bootstrap replications of �ψ∗
j are computed: ψ∗

j,1, ...,ψ
∗
j,B .

If �F(B)ψj
(t) represents a sample cumulative density func-

tion (cdf) of ψj derived from these bootstrap replications,
then the probability for the local characteristic function ψj
can be approximated as

P[ψj ≤ Λ] ≈ �F(B)ψj
(Λ). (4)

The approximation in Equation (4) becomes a strict equal-
ity should the existence of a monotone normalizing trans-
formation be assumed for the ψj distribution, which is
based on a proof of bootstrap percentile confidence inter-
val [29]. An exact normalizing transformation will rarely
exist, but approximate normalizing transformations may
exist—the latter causes the probability that ψj is less than
or equal to Λ to be not exactly �F(B)ψj

(Λ). For additional
information related to the accuracy of the bootstrap approx-
imations refer to [24].

3 Simulation Setup

To evaluate the performance of the iterative heuristics de-
scribed in Section 4 for the considered class of HC sys-
tems operating on periodic data, the following approach
was used to simulate a cluster-based radar system environ-
ment schematically illustrated in Fig. 1. The execution
time distributions for twenty eight different types of possi-
ble radar ray processing algorithms on eight (M = 8) het-
erogeneous compute nodes were generated by combining
experimental data and benchmark results. The experimen-
tal data, represented by two execution time sample pmfs,
were obtained by conducting experiments on the Colorado
MA1 radar [15]. These sample pmfs contain times taken
to process 500 radar rays of different complexity by the
Pulse-Pair & Attenuation Correction algorithm [3] and by
the Random Phase & Attenuation Correction algorithm [3],
both executed in non-multitasking mode on the Sun Mi-
crosystems Sun Fire V20z workstation. To simulate the ef-
fect of executing these algorithms on different platforms,
each sample pmf was scaled by a factor corresponding
to the performance ratio of a Sun Microsystems Sun Fire
V20z to each of eight selected compute nodes1 based on

1The eight compute nodes selected to be modeled were: Altos R510,
Dell PowerEdge 7150, Dell PowerEdge 2800, Fujitsu PRIMEPOWER
650, HP Workstation i2000, HP ProLiant ML370 G4, Sun Fire V65x,
and Sun Fire X4100.

the results of the fourteen floating point benchmarks from
the CFP2000 suite [26]. Combining the results available
from CFP2000 for fourteen different benchmarks on eight
selected compute nodes and two sample pmfs provided a
means for generating a 28 × 8 matrix where the yjth el-
ement corresponds to the execution time distribution of a
possible ray processing algorithm of type y on compute
node ηj .

A set of 128 applications (N = 128) was formed for
each of 50 simulation trials, where for each trial the type of
each application was determined by randomly sampling in-
tegers in the range [1, 28]. The 50 simulation trials provide
good estimates of the mean and 95% confidence interval
computed for every resource allocation algorithm.

4 Iterative Resource Allocation Techniques
4.1 Overview

Three iterative algorithms were designed for the problem
of finding a resource allocation with respect to the perfor-
mance goal stated in Subsection 2.1. Iterative algorithms
are probabilistic search techniques that have been widely
used as a tool in optimization [20, 23, 30], artificial intelli-
gence [12], and many other areas. The first two of the de-
veloped heuristics operate with a set of complete resource
allocations; whereas the third heuristic iteratively changes a
single complete resource allocation. As opposed to greedy
algorithms investigated in our previous work, where a sin-
gle complete resource allocation was “constructed” [25],
iterative heuristics progress toward a final solution through
modified versions of complete resource allocations. In each
iteration, the existing complete resource allocation (or set
of allocations) is modified and evaluated. Such an itera-
tive search process continues until an appropriate stopping
criterion is reached.

To establish a basis for the comparison of the devel-
oped iterative algorithms and demonstrate the performance
over time for each of them, a common stopping criterion
(CSC) of 150,000 evaluations of the produced resource al-
locations was used in this study. It is important to note that
the evaluation in the considered stochastic domain is the
most computationally intensive part of any of the developed
algorithms as it calls forM executions of (nj−1)-fold con-
volutions, followed by a recursive search for a minimum Λ
level. The evaluation mechanism, referred to as the Period
Minimization Routine, is described next.

Period Minimization Routine: The PMR procedure
determines the minimum possible value of Λ for a given
resource allocation and a given level of stochastic robust-
ness. As a first step, the results of (nj − 1)-fold convolu-
tions are obtained with the FFT or bootstrap methods for
each compute node corresponding to the completion time

(i.e.,
nj�
i=1

Tij) distributions expressed in a pmf form. The

completion time pmf for compute node ηj is comprised of
Kj impulses, where every impulse corresponds to a possi-
ble pair of time outcome tkj and associated probability pkj

for k ∈ [1,Kj].
As a second step, the minimumΛ is determined recur-

sively as the smallest value among {tkj | 1 ≤ k ≤ Kj , 1 ≤
j ≤ M}, such that the specified level of stochastic robust-

ness is less than or equal to
M�

j=1

Kj�
k=1

(pkj × 1(tkj ≤ Λ)),

where 1(condition) is 1 if condition is true; 0 otherwise.

168

lo = t1 ← min{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤ M};
hi = t2 ← max{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤ M};
P ← specified level of P[ψ ≤ Λ];
while ∃ tkj ∈ (lo, hi) | {1 ≤ k ≤ Kj , 1 ≤ j ≤ M}

P[ψ ≤ Λ] ←
M�

j=1

Kj�
k=1

pkj × 1(tkj ∈ [t1, hi]);

case P[ψ ≤ Λ] :
== P : return;
> P : hi ← t2;
< P : lo ← t2;

end of case
t2 ← {tkj closest to lo + (hi− lo)/2

| 1 ≤ k ≤ Kj , 1 ≤ j ≤ M}
end of while
Λ ← hi.

Figure 2. The Period Minimization Routine procedure.

The PMR procedure is summarized in Fig. 2.
AfterΩ iterations, the PMR procedure reduces the un-

certainty range by the factor ≈ (0.5)Ω, which is the fastest
possible uncertainty reduction rate. This optimality be-
comes possible due to the fact that θ is strictly increasing
as the number of impulses considered for its computation
grows.

4.2 Steady State Genetic Algorithm

The adopted genetic algorithm (GA) implementation (sum-
marized in Fig. 3) was motivated by the Genitor evolution-
ary heuristic [30]. Each chromosome in the GA models
a complete resource allocation as a vector of numbers of
length N where the ith element of the vector identifies the
compute node assignment for application ai. The order in
which applications are placed in a chromosome does not
play any role and can be considered arbitrary. The popula-
tion size for the GA was fixed at 200 for each iteration. The
population size was chosen experimentally by varying the
population size between 100 and 250 in increments of 50.
For the samples tried, a value of 200 performed the best and
was chosen for all trials. The initial members of the pop-
ulation were generated by applying the one-phase sorting
greedy heuristic presented in [25], in which the application
ordering was perturbed to produce different resource allo-
cations to serve as the initial members of the population.
In addition, the solution produced by the BASIC heuristic
from [25] was also added to the initial population.

The GA used in this work was implemented as a
steady state GA, i.e., for each iteration of the GA only a
single pair of chromosomes will be selected for crossover.
Selection for crossover was implemented as rank-based se-
lection using linear bias function [30] where the popula-
tion of chromosomes is sorted according to evaluation of
Λ values. The most fit chromosome corresponds to a re-
source allocation with the smallest Λ value supportable at
the specified level of stochastic robustness θ. Each chromo-
some generated by crossover or mutation is inserted into
the population according to its evaluation such that after
insertion the population remains sorted. After insertion the
population is truncated to the original population size.

To maintain the selective pressure of rank-based se-
lection an additional constraint was placed on the popula-

tion where each chromosome must be unique, i.e., clones
are explicitly disallowed. If a chromosome produced in any
iteration were to generate a clone of an individual already
present in the population or the graveyard, then that clone
would be discarded prior to its evaluation for insertion into
the population.

To reduce the number of duplicate chromosome eval-
uations, each chromosome that is trimmed from the ac-
tive population is recorded in a list of known bad chromo-
somes referred to as the graveyard. Selecting the size of the
graveyard reflected a trade-off between the time required
to identify that a new chromosome was not present in the
population and graveyard and the time required to evaluate
the new chromosome. The graveyard size was limited to
20,000 chromosomes.

The crossover operator was implemented using a two-
point reduced surrogate procedure [30] where the elements
between the crossover points are exchanged between the
two parents. Crossover points are selected such that at least
one element of the parent chromosomes differs between
the selected crossover points as this guarantees offspring
to not be a clone of its parents. In addition, each generated
offspring is checked for uniqueness in the population and
graveyard prior to Λ evaluation.

The final step in a single iteration of the GA is mu-
tation. For each iteration of the GA, the mutation operator
is applied to the newly generated offspring of the crossover
operator. Each application assignment of the offspring is
individually mutated with a probability referred to as the
mutation rate. For the simulated environment, the best re-
sults were achieved using a mutation rate of 0.01. For a
given application, the mutation operator randomly selects a
different compute node assignment from a subset of com-
pute nodes. The subset includes compute nodes providing
the smallest mean execution times for the given applica-
tion. The best results in the simulation study were achieved
when the size of this subset was set to three. Following
mutation a final local search procedure, conceptually analo-
gous to steepest descent technique, was applied to the result
prior to inserting the mutated chromosome into the popula-
tion.

A local search operator was introduced for inclusion
into a GA as a follow on step to the mutation operator for
a flowshop problem in [32]. The implementation of the lo-
cal search procedure, follows that of the coarse refinement
presented as part of the GIM heuristic described in [27].
In particular, all applications are examined to determine
which of them should be moved to a different compute
node to realize the largest decrease in the minimum sup-
portable Λ value. The procedure continues until moving
any application would result in an increase in the minimum
supportable Λ value.

4.3 Ant Colony Optimization

The Ant Colony Optimization (ACO) heuristic (summa-
rized in Fig. 4) belongs to a class of swarm optimiza-
tion algorithms where low-level interactions between arti-
ficial (i.e., simulated) ants result in large-scale optimiza-
tions by the larger ant colony. The technique was inspired
by colonies of real ants that deposit a chemical substance
(pheromone) when searching for food. This substance in-
fluences the behavior of individual ants. The greater the
amount of pheromone on a particular path, the larger the
probability that an ant will select that path. Artificial ants
in ACO behave in a similar manner by recording their cho-
sen path in a global pheromone table.

169

generate initial population;
evaluate each chromosome;
rank population based on Λ values;
while CSC not met
select two chromosomes from the population;
select crossover points;
exchange compute node assignments
between crossover points;
ascertain if either offspring are unique;
for each element of each child chromosome
generate a random number x in the range [0,1];
if x < mutation rate
determine 3 minimum mean execution time machines
for the selected application;
arbitrarily change the compute node assignment
of the selected application;

apply local search to each of the offspring;
ascertain if either offspring is unique;
insert unique offspring into population;
trim population down to population size;
move dead chromosomes to the graveyard;

end of while
output the best solution.

Figure 3. The steady state Genetic Algorithm procedure.

The ACO algorithm implemented here is a variation
of the ACO algorithm design described in [9]. During ACO
execution, the N ×M pheromone table is maintained and
updated allowing the ants to share global information about
good compute nodes for each application. Let each ele-
ment of pheromone table, denoted as τ(ai, ηj), represent
the “goodness” of compute node ηj for application ai. At a
high level, the ACO heuristic works in the following way.
A certain number of ants are released to find different com-
plete mapping solutions. Based on the mapping produced
by the individual ants, the pheromone table is updated.
This procedure is repeated as long as the common stop-
ping criterion is not reached. The final mapping solution
is determined by mapping each application to its highest
pheromone value compute node.

At a low level, each ant heuristically “constructs”
its complete mapping, and its mapping decision process
balances between the (a) performance metric and (b)
pheromone table information. The ant procedure involves
two phases. In Phase 1, for each unmapped application, the
compute node, denoted as mbest(ai), is determined such
that it would provide the minimum mean completion time,
µmin(ai), across allM compute node completion time dis-
tributions. Each of these distributions is obtained by map-
ping ai to the compute node and determining the new com-
pletion time distribution for the compute node. The worth
of application ai, denoted as η(ai), is then determined as a
result of the following normalization

η(ai) =
µmin(ai)�

unmapped ak

µmin(ak)
. (5)

In Phase 2, an unmapped application is stochasti-
cally selected (procedure described later) and assigned to

itsmbest(ai) compute node. The ant procedure is repeated
until all applications are mapped.

Let the fitness of ant s, denoted as f(s) ∈ (0, 1), be
determined as a rank of ant s in the sorted order of ants in
the current iteration. Sorting is based on the minimum pos-
sible level of Λ, obtained with a PMR call invoked at the
end of each ant procedure, while ranking employs a con-
cept of linear bias function [30]. The pheromone table is
updated at the end of each high-level iteration, i.e., when all
ants complete their paths. Specifically, if ρ denotes a coef-
ficient that represents pheromone evaporation, Bs denotes
the set of application-compute node assignments compris-
ing the path of ant s, and assuming Q ants released, each
τ(ai, ηj) is updated as follows

τ(ai, ηj) = ρ× τ(ai, ηj) +
Q�

s=1

f(s)× 1(ai assigned to ηj in Bs). (6)

Initially, all values in the pheromone table were set to 1.
Let α be the scalar that controls the balance between

the pheromone value and worth. The probability that ant s
selects application ai to be mapped next is

P[ai selected next] =
α× τ(ai,mbest(ai)) + (1− α)× η(ai)�

unmapped ak

α× τ(ak,mbest(ak)) + (1− α)× η(ak)
.

(7)

The scalar α was determined experimentally by increment-
ing from 0 to 1 in 0.1 steps. In the simulation trials tested,
the performance peak was detected with α equal to 0.5. The
pheromone evaporation factor ρ of 0.01 was determined in
a similar manner. The total number of ants for each itera-
tion was set to 50; any further increase of this number in
the experiments resulted in performance degradation. Note
that numerical values for all the aforementioned parame-
ters were determined with respect to the input specified
for the conducted experiments—i.e., these values must be
readjusted for different inputs.

initialize pheromone table;
while CSC not met
for each ant
while there are unmapped applications
select application ai according to (7);
map application ai tombest(ai) compute node;
break ties arbitrarily;

end of while;
compute f(s) via PMR call;

update pheromone table according to (6);
end of while
map each application ai to itsmbest(ai) compute node.

Figure 4. The Ant Colony Optimization procedure.

4.4 Simulated Annealing

The Simulated Annealing (SA) algorithm (summarized in
Fig. 5) —also known in the literature as Monte Carlo an-

170

nealing or probabilistic hill-climbing [20]— is based on an
analogy taken from thermodynamics. In SA, a randomly
generated solution, structured as the chromosome for GA
and used as a startup point, is then iteratively modified and
refined. Thus, SA in general, can be considered as an itera-
tive technique that operates with one possible solution (i.e.,
resource allocation) at a time.

To deviate from the current solution in an attempt to
find a better one, SA repetitively performs the mutation
operation in the same fashion as for GA including local
search. Once a new unique solution, denoted as Snew, is
produced (SA uses the same procedure as GA to determine
uniqueness), a decision regarding the replacement of a pre-
vious solution with a new one has to be made. If the qual-
ity of a new solution, Λ(Snew), found after evaluation, is
higher than the old solution, the new solution replaces the
old one. Otherwise, SA uses a procedure that probabilis-
tically allows poorer solutions to be accepted during the
search process, which makes this algorithm different from
other strict hill-climbing algorithms [20]. This probabil-
ity is based on a system temperature, denoted as T, that
decreases with each iteration. As the system temperature
“cools down” it becomes more difficult for poorer solutions
to be accepted. Specifically, in the latter case, the SA algo-
rithm selects a sample from the range [0, 1) according to
the uniform distribution. If

random[0, 1) >
1

1 + exp(
Λ(Sold)−Λ(Snew)

T)
(8)

the new poorer resource allocation is accepted; otherwise,
the old one is kept. As it follows from (8), the probability
for a new solution of similar quality to be accepted is close
to 50%. In contrast, the probability of poor solutions to be
rejected is rather high, especially when the system temper-
ature becomes relatively small.

After each mutation (described in the GA procedure)
that successfully produces a new unique solution, the sys-
tem temperature T is reduced to 99% of its current value.
This percentage, defined as a cooling rate, was determined
experimentally by varying the rate in the range of (0.9, 1]
in 0.01 steps. The initial system temperature in (8) was set
to the Λ of the chosen startup resource allocation.

Sold ← initial randomly generated resource allocation;
T ← Λ(Sold);
while CSC not met

Snew ←result of successful mutation;
if Λ(Snew) < Λ(Sold)

Sold ← Snew;
else if (8) holds

Sold ← Snew;
T ← 0.9× T;
end of while

Figure 5. The Simulated Annealing procedure.

5 Lower Bound Calculation

To evaluate the absolute performance attainable by the
developed resource allocation techniques, a lower bound
(LB) on the minimum period Λ was derived based on the

assumption that the specified level of the stochastic robust-
ness metric is greater than or equal to 0.5, i.e., θ ≥ 0.5,
which is typical for practical implementations. The process
of calculating LB involves two major steps. In the first step,
a “local” lower bound on Λ is established for a given map-
ping. In the second step, a unique LB is computed for all
possible local lower bounds by solving a relaxed form of
the Integer Linear Program formulated for the resource al-
location problem.

Step 1: Consider a given complete resource allocation
of N applications on M compute nodes. Let Λ denote the
maximum of the means across all M completion time dis-

tributions, µ(
nj�
i=1

Tij), i.e., Λ = max{µ(
nj�
i=1

Tij) | 1 ≤ j ≤

M}. As an assumed level of the stochastic robustness met-
ric is greater than or equal to 0.5, Λ represents the smallest
possible time period for a given mapping. To observe this,
recall that

1. mean µ(a) is a “center of mass” of the distribution of
random variable a, so that if z is the compute node

given by z = argmax{µ(
nj�
i=1

Tij) | 1 ≤ j ≤ M}, then

P[ψz ≤ Λ] = 0.5;

2. P[ψz ≤ Λ] ≥ P[ψ ≤ Λ] because according to (2),
P[ψ ≤ Λ] is computed as anM -product of P[ψj ≤ Λ],
where each ofM terms is less than or equal to one.

Step 2: An objective here is to determine LB, denoted
as Λ∗, such that Λ∗ ≤ min{Λ | all possible mappings}.
Relying on the property that the sum of means is equal to

the mean of the sums, i.e.,
nj�
i=1

µ(Tij) = µ(
nj�
i=1

Tij), the

problem of finding Λ∗ can be formulated in the following
Integer Linear Programming (ILP) form2.

Let a binary decision variable x[i, j] | {1 ≤ i ≤
N ; 1 ≤ j ≤ M} be equal to one if application ai is as-
signed to compute node ηj , and equal to zero if ai is not
assigned to compute node ηj . The ILP objective function
can be stated as

minimize Λ∗ = max{
N�

i=1

µ(Tij)×x[i, j] | 1 ≤ j ≤ M}.

The objective function is subject to conditions (a) and (b):
x[i, j] ∈ {0, 1} for 1 ≤ i ≤ N , 1 ≤ j ≤ M ; (a)
N�

i=1
x[i, j] = 1 for 1 ≤ j ≤ M ; (b)

In addition to condition (a) explained above, condi-
tion (b) forces each application to be mapped to the system.
For small-scale problems, a global optimal solution can be
found for the derived ILP form in a reasonable time (e.g.,
by applying Branch-and-Bound technique). However, con-
dition (b) makes the ILP form NP-complete [21], so that
for large-scale problems a Linear Programming (LP) relax-
ation is required to the ILP form that implies that condition
(a) is relaxed to real numbers, i.e., x[i, j] ∈ [0, 1] | {1 ≤
i ≤ N, 1 ≤ j ≤ M}. Due to this relaxation, in general,
an LP solution does not correspond to a valid mapping, but

2The presented below ILP formulation can easily be converted to a
canonical ILP form.

171

450

470

490

510

530

550

570

Basic ACO SA GA LB

(m
se
c.)

Figure 6. A comparison of the results obtained for the de-
scribed heuristics. The y-axis corresponds to a minimum
Λ value achieved by each heuristic. The error bars demon-
strate 95% confidence intervals computed over 50 trials.

it allows the global optimal solution to be found in polyno-
mial time [11], that will be a lower bound for the ILP global
optimal solution Λ∗. Also note that the derived LB is get-
ting tighter for the stochastic robustness levels approaching
0.5; this is a result of using mean values in the LB compu-
tation.

6 Experimental Results
The results of the simulation are presented in Fig. 6. Both
the GA and SA heuristics were able to improve upon the
results of the Basic heuristic of [25] by more than 7% with
respect to the absolute performance and by 50% with re-
spect to the derived LB. However, the ACO procedure was
unable to improve upon the results of the Basic heuristic
but was able to produce a results such that the confidence
intervals of the ACO and Basic results were overlapping.

For the 50 trials tested, LB produced a mean mini-
mum supportable Λ of 469.8 msec. The mean of the Basic
heuristic over the same 50 trials was found to be 542.5 with
a 95% confidence interval of 7.07. The ACO results had a
mean minimum supportable Λ value of 553.7 with a 95%
confidence interval of 6.2. The SA procedure for the same
trials produced a mean Λ value of 505.6 with a 95% confi-
dence interval of 5.9. The GA result was very similar to the
SA result, producing a mean Λ value of 505.3 with a 95%
confidence interval of 6.1.

Both the GA and SA heuristics performed compara-
bly in this simulation environment. The success of the SA
procedure and the near overlap of the SA and GA results
may suggest that the local search procedure used in the mu-
tation operator by both GA and SA is responsible for their
marked improvement over Basic. Additional experiments
were conducted with the GA without utilizing local search
and although the simple GA was able to improve the aver-
age result of the Basic heuristic by almost 2% the improve-
ment was not statistically significant. The GA with the lo-
cal search mutation operator outperforms the GA without
local search by a significant margin.

The ACO heuristic was unable to improve upon the
results of the Basic heuristic of our previous work. This
might suggest that using only the mean values of the exe-
cution time distributions to construct solutions in Phase 1 is
insufficient. Instead of operating with mean values, inter-

mediate minimum levels of Λ could be computed through
PMR calls to potentially improve the results of the ACO
procedure. However, this would dramatically increase the
number of evaluations required by ACO to produce the ants
of each iteration. In so doing, the number of high-level it-
erations that the ACO procedure would be able to complete
within the CSC would be significantly reduced. The major
hindrance to the effectiveness of ACO in this environment
is that it relies on the repetitive application of a constructive
heuristic within an iteration to update the pheromone table.
As shown in [25], constructive heuristics such as the Basic
heuristic require a large number of time-consuming FFT
executions, this approach significantly slows down each
ant’s production of a completed resource allocation, which,
in turn, limits the number of high-level iterations that can
be performed within the CSC.

The success of combining a simple local search with
GA and SA suggest that a more exhaustive local search
may be worth investigating in future work. The more ex-
haustive local search might consider swapping applications
between compute nodes in addition to moving applica-
tions between compute nodes. Although the introduction of
swapping will increase the number of evaluations required
to complete the local search procedure, it may lead to an
improved result over the current coarse approach to local
search.

7 Related Work

In HC systems the concept of robust resource allocation
called for a foundation of a universal robustness frame-
work. The latter issue was first addressed in [1], where
the authors proposed a four-step FePIA procedure to de-
rive a robustness metric for a given resource allocation in a
distributed system. The framework was based on determin-
istic estimates (e.g., current or nominal values) for each of
the considered system parameters.

As a measure of robustness, the ”minimum robust-
ness radius” was used that indicates the distance from the
current (or nominal) state of the system in a multidimen-
sional space of perturbation parameters to the nearest point
where a QoS violation occurs. Assuming no a priori in-
formation available about the relative likelihood or magni-
tude of change for each perturbation parameter, the mini-
mum robustness radius implies a deterministic worst-case
analysis. In our stochastic model, more information regard-
ing the variation in the perturbation parameters is assumed
known. Representing the uncertainty parameters of the sys-
tem as stochastic variables enables the robustness metric in
the stochastic model to account for all possible outcomes
for the performance of the system. An example compari-
son analysis between the stochastic robustness metric and
deterministic one is given in [24]. The stochastic robust-
ness metric requires more information and, in general, is
far more complex to calculate than its deterministic coun-
terpart.

In [4], the robustness of a resource allocation is de-
fined in terms of the schedule’s ability to tolerate an in-
crease in application execution time without increasing the
total execution time of the resource allocation. A resource
allocation’s robustness implies system slack thereby the au-
thors are focusing their metric on a single very important
uncertainty parameter, i.e., variations in application execu-
tion times. Our metric is more generally applicable, allow-
ing for any definition of QoS and able to incorporate any
identified uncertainty parameters.

Our methodology relies heavily on an ability to model

172

the uncertainty parameters as stochastic variables. Several
previous efforts have established a variety of techniques for
modeling the stochastic behavior of application execution
times [2, 7, 18]. In [2], three methods for obtaining prob-
ability distributions for task execution times are presented.
The authors also present a means for combining stochastic
task representations to determine task completion time dis-
tributions. Our work leverages this method of combining
independent task execution time distributions and extends
it by defining a means for measuring the robustness of a
resource allocation against an expressed set of QoS con-
straints.

In [14], a procedure for predicting task execution
times is presented. The authors introduce a methodology
for defining data driven estimates in a heterogeneous com-
puting environment based on nonparametric inference. The
proposed method is applied to the problem of generating an
application execution time prediction given a set of obser-
vations of that application’s past execution times on differ-
ent compute nodes. The model defines an application exe-
cution time random variable as the combination of two ele-
ments. The first element corresponds to a vector of known
factors that have an impact on the execution time of the
application and is considered to be a mean of the execu-
tion time random variable. A second element accounts for
all unmodeled factors that may impact the execution time
of an application and is used to compute a sample variance.
Potentially, this method can be extended to determine prob-
ability density functions describing the input random vari-
ables in our framework.

The deterministic robustness metric established for
distributed systems in [1] was used in multiple heuristic
approaches presented in [27]. Two variations of robust
mapping of independent tasks to machines were studied
in that research. In the fixed-machine-suite variation, six
static heuristics were presented that maximize the robust-
ness of a mapping against aggregate errors in the execution
time estimates. A variety of iterative algorithms demon-
strate higher performance as compared to the non-iterative
greedy heuristics. However in the deterministic domain,
greedy heuristics required significantly less time to com-
plete a mapping. A similar trade-off was observed for an-
other variation where a set of machines must be selected
under a given dollar cost constraint that will maximize the
robustness of a mapping.

Genetic algorithm was adopted to address resource
allocation problem in distributed systems in [28], assum-
ing task execution times deterministic and known a pri-
ori. Later, in [8], the authors present a derivation of the
makespan problem that relies on a stochastic representa-
tion of task execution times. The paper demonstrates that
the proposed stochastic approach to scheduling can signif-
icantly reduce the actual simulated system makespan as
compared to some well known scheduling heuristics that
are founded in a deterministic approach to modeling task
execution times. In contrast to [8] in our research, the em-
phasis was to build resource allocations capable of main-
taining a certain level of probability to deliver on expressed
QoS constraints by applying iterative resource allocation
algorithms.

8 Conclusion

This paper presented a set of iterative algorithms for find-
ing stochastically robust resource allocations in heteroge-
neous clusters where workload surges are likely to occur.
The objective function in algorithm design was based on

our stochastic robustness metric, which is suitable for eval-
uating the likelihood that a resource allocation will perform
acceptably, i.e., satisfy imposed QoS constraints, despite an
uncertainty in system parameters. Given the raw volume of
computation required to compute the proposed robustness
metric in the stochastic domain, the FFT method and boot-
strap approximation technique were outlined along with the
underlying assumptions of independence.

Multiple parameters pertaining to each iterative algo-
rithm were setup for the best performance in the simulated
environment that replicated a heterogeneous cluster-based
processing center of a radar system. The goal in the exper-
iments was to generate a resource allocation that allows for
the minimum time period between sequential sensor out-
puts and guarantees a specified probability level that data
processing is completed in time.

The performance analysis of multiple test trials re-
vealed a great potential of the GA and SA algorithms to
efficiently manage resource allocation in a large class of
heterogeneous clusters operating on periodic data sets. In
addition to complex radar systems, the developed resource
allocation techniques can be applied in other practical im-
plementations such as surveillance for homeland security,
monitoring vital signs of medical patients, and automatic
target recognition systems.

Acknowledgement

The authors would like to thank Jennifer Hale, Patrick
Moranville, and Robert Umland for their contributions.

References

[1] S. Ali, A. A.Maciejewski, H. J. Siegel, and J.-K. Kim,
“Measuring the robustness of a resource allocation,”
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 15, no. 7, pp. 630–641, July 2004.

[2] G. Bernat, A. Colin, and S. M. Peters, “WCET analy-
sis of probabilistic hard real-time systems,” in Pro-
ceedings 23rd IEEE Real-Time Systems Symposium
(RTSS ’02), 2002.

[3] N. Bharadwaj and V. Chandrasekar, “Waveform de-
sign for CASA X-band radars,” in Proceedings 32st
Conference on Radar Meteorology of American Me-
teorology Society, Oct. 2005.

[4] L. Bölöni and D. Marinescu, “Robust scheduling of
metaprograms,” Journal of Scheduling, vol. 5, no. 5,
pp. 395–412, Sept. 2002.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, and B. Yao, “A com-
parison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distrib-
uted Computing, vol. 61, no. 6, pp. 810–837, June
2001.

[6] E. G. Coffman, Ed., Computer and Job-Shop Schedul-
ing Theory. New York, NY: John Wiley & Sons,
1976.

[7] L. David and I. Puaut, “Static determination of prob-
abilistic execution times,” in Proceedings 16th Eu-
romicro Conference on Real-Time Systems (ECRTS
’04), June 2004.

173

[8] A. Dogan and F. Ozguner, “Genetic algorithm based
scheduling of meta-tasks with stochastic execution
times in heterogeneous computing systems,” Cluster
Computing, vol. 7, no. 2, pp. 177–190, Apr. 2004.

[9] M. Dorigo and L. M. Gambardella, “Ant colony sys-
tem: A cooperative learning approach to the traveling
salesman problem,” IEEE Transactions on Evolution-
ary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[10] I. Foster and C. Kesselman, Eds., The Grid 2: Blue-
print for a New Computing Infrastructure. San Fran-
cisco, CA: Morgan Kaufmann, 1999.

[11] C. C. Gonzaga, “Path-following methods for linear
programming,” SIAM Review, vol. 34, no. 2, pp. 167–
224, June 1992.

[12] J. H. Holland, Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Cam-
bridge, MA: MIT Press, 1992.

[13] O. H. Ibarra and C. E. Kim, “Heuristic algorithms
for scheduling independent tasks on non-identical
processors,” Journal of the ACM, vol. 24, no. 2, pp.
280–289, Apr. 1977.

[14] M. A. Iverson, F. Ozguner, and L. Potter, “Statisti-
cal prediction of task execution times through ana-
lytical benchmarking for scheduling in a heteroge-
neous environment,” IEEE Transactions on Comput-
ers, vol. 48, no. 12, pp. 1374–1379, Dec. 1999.

[15] F. Junyent, V. Chandrasekar, D. McLaughlin,
S. Frasier, E. Insanic, R. Ahmed, N. Bharadwaj,
E. Knapp, L. Krnan, and R. Tessier, “Salient features
of radar nodes of the first generation NetRad system,”
in Proceedings IEEE International Geoscience and
Remote Sensing Symposium 2005 (IGARSS ’05), July
2005, pp. 420–423.

[16] A. Kumar and R. Shorey, “Performance analysis and
scheduling of stochastic fork-join jobs in a multicom-
puter system,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 10, Oct. 1993.

[17] A. Leon-Garcia, Probability & Random Processes
for Electrical Engineering. Reading, MA: Addison
Wesley, 1989.

[18] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and
D. W. Watson, “Determining the execution time dis-
tribution for a data parallel program in a heteroge-
neous computing environment,” Journal of Parallel
and Distributed Computing, vol. 44, no. 1, pp. 35–52,
July 1997.

[19] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of in-
dependent tasks onto heterogeneous computing sys-
tems,” Journal of Parallel and Distributed Comput-
ing, vol. 59, no. 2, pp. 107–121, Nov. 1999.

[20] Z. Michalewicz and D. B. Fogel, How to Solve It:
Modern Heuristics. New York, NY: Springer-Verlag,
2000.

[21] K. G. Murty and S. N. Kabadi, “Some NP-complete
problems in quadratic and nonlinear programming,”
Mathematical Programming, vol. 39, no. 2, pp. 117–
129, Nov. 1987.

[22] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals,
Systems, and Transforms. Upper Saddle River, NJ:
Pearson Education, 2003.

[23] V. Shestak, E. K. P. Chong, A. A. Maciejewski, H. J.
Siegel, L. Benmohamed, I.-J. Wang, and R. Daley,
“Resource allocation for periodic applications in a
shipboard environment,” in Proceedings 19th Inter-
national Parallel and Distributed Processing Sympo-
sium (IPDPS 2005), 14th Heterogeneous Computing
Workshop (HCW 2005), Apr. 2005, pp. 122–127.

[24] V. Shestak, J. Smith, A. A. Maciejewski, and H. J.
Siegel, “A stochastic approach to measuring the ro-
bustness of resource allocations in distributed sys-
tems,” in Proceedings International Conference on
Parallel Processing (ICPP–06), Aug. 2006, pp. 459–
467.

[25] V. Shestak, J. Smith, R. Umland, J. Hale,
P. Moranville, A. A. Maciejewski, and H. J. Siegel,
“Greedy approaches to static stochastic robust re-
source allocation for periodic sensor driven distrib-
uted systems,” in Proceedings the 2006 International
Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’06), June
2006, pp. 3–9.

[26] Standard performance evaluation corporation. Ac-
cessed Feb. 6, 2006. [Online]. Available:
http://www.spec.org/

[27] P. Sugavanam, H. J. Siegel, A. A. Maciejewski,
M. Oltikar, A. Mehta, R. Pichel, A. Horiuchi, V. Shes-
tak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang,
M. Aydin, P. Lee, K. Guru, M. Raskey, and A. Pip-
pin, “Robust static allocation of resources for inde-
pendent tasks under makespan and dollar cost con-
straints,” Journal of Parallel and Distributed Comput-
ing, 2006, accepted to appear.

[28] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, “Task matching and scheduling in het-
erogeneous computing environments using a genetic-
algorithm-based approach,” Journal of Parallel and
Distributed Computing, vol. 47, no. 1, pp. 8–22, Nov.
1997.

[29] L. Wasserman, All of Statistics: A Concise Course
in Statistical Inference. New York, NY: Springer
Science+Business Media, 2005.

[30] D. Whitley, “The genitor algorithm and selective
pressure: Why rank-based allocation of reproductive
trials is best,” in Proceedings 3rd International Con-
ference on Genetic Algorithms, June 1989, pp. 116–
121.

[31] L. A. Wolsey, Integer Programming. New York, NY:
John Wiley & Sons, 1998.

[32] T. Yamada and C. Reeves, “Permutation flowshop
scheduling by genetic local search,” in Proceedings
Genetic Algorithms in Engineering Systems: Innova-
tions and Applications, Sept. 1997, pp. 232–238.

174

