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Abstract—Heterogeneous, parallel and distributed comput-
ing systems frequently must operate in environments where
uncertainty in system parameters is common. Robustness can
be defined as the degree to which a system can function
correctly in the presence of parameter values different from
those assumed. In such an environment, the amount of
processing required to complete any given task may fluctuate
substantially due to variations in data size and content.
Determining a resource allocation that accounts for this
uncertainty is an important area of research. In this study,
we define a stochastic robustness measure to facilitate batch-
mode resource allocation decisions in a dynamic environment
where tasks are subject to individual deadlines and design
a novel resource allocation technique that attempts to max-
imize our new stochastic robustness measure. We compare
the performance of our technique against some commonly
used approaches taken from the literature and adapted to
our environment. Our performance results demonstrate the
viability of our new technique in a dynamic heterogeneous
computing system.

Keywords: robustness, heterogeneous computing, resource
management, dynamic resource allocation, distributed comput-
ing

I. INTRODUCTION
Heterogeneous, parallel and distributed computing sys-

tems frequently must operate in environments where un-
certainty in system parameters is common. Robustness
can be defined as the degree to which a system can
function correctly in the presence of parameter values
different from those assumed [1]. In this research, we
design a new stochastic robustness measure based on our
earlier research [2]. Our measure is suited to facilitating
batch-mode resource allocation decisions in a dynamic
environment that is over-subscribed and tasks are subject
to individual deadlines, i.e., the arrival rate of tasks is such
that the system is not able to complete all tasks on-time.
This research was motivated by a heterogeneous dis-

tributed computing system used for processing data inten-
sive compute tasks. In this system, user tasks are queued
at a resource manager for assignment to any one of a

This research was supported by the NSF under Grant ECCS-0700559
and by the Colorado State University George T. Abell Endowment.

collection of dedicated heterogeneous machines. The exact
execution time of any given task is assumed dependent on
the details of the data that is to be processed (including the
size and actual content of the data) and the machine that
is to execute the task. Task execution times may be highly
variable due to their data dependence and, as such, are
treated as random variables. We assume that each machine
in the HC suite operates in a non-multi-tasking mode, i.e.,
each machine may only execute one task at a time.
Any claim of robustness for a given system must answer

three fundamental questions [1]: (a) What behavior makes
the system robust? (b) What are the uncertainties that
the system is robust against? (c) Quantitatively, exactly
how robust is the system? A robust resource allocation
in this environment is one that is capable of completing
all tasks by their assigned deadlines. Task execution times
are a known source of uncertainty and variation in task
execution times may have a significant impact on our
stated performance objective. The robustness of a resource
allocation can be quantified as the expected number of
tasks that will complete by their deadline, as predicted at
a given point in time.
From this set of requirements, we formulate a robustness

measure for resource allocations using the probability
that an allocation will complete a collection of tasks on-
time. Our new stochastic robustness measure extends the
utility of stochastic robustness to environments that are
severely over-subscribed and the likelihood of having zero
probability to meet any given deadline is high. We use
this formulation of the stochastic robustness measure along
with the alternate measure to design a batch-mode resource
allocation heuristic capable of allocating a dynamically ar-
riving set of tasks to a dedicated heterogeneous computing
(HC) system. In general, the problem of resource alloca-
tion in the field of heterogeneous parallel and distributed
computing is NP-complete (e.g., [3], [4]), therefore, the
development of heuristic techniques to find near-optimal
solutions represents a large body of current research (e.g.,
[4]–[11]).
In our prior research [2], we assumed that the resource

manager operated in immediate-mode, i.e., tasks were
assigned to machines immediately upon their arrival and
cannot be re-allocated later. Alternatively, batch-mode
heuristics collect arriving tasks to form a batch prior to
making resource allocation decisions. A major contribution



of our current study is the design of a new robustness
measure that allows for tasks that have no probability of
meeting their deadline at the time they are allocated. This
additional measure is crucial for the design of resource
allocation techniques that are effective in severely over-
subscribed environments. In addition, we design a batch-
mode resource allocation technique that leverages both
the stochastic robustness measure and our new robustness
measure to make effective resource allocation decisions.
We compare our robustness-based resource management
approach to several heuristics taken from the literature and
adapted to this environment. The results of our simulation
study demonstrate the effectiveness of our robustness-
based approach.
In the next section, we present an overview of the

system model used to evaluate the chosen approach. A
sampling of the related work is given in Section III. Sec-
tion IV describes our mathematical model of robustness
in a dynamic environment including our extension for
an over-subscribed environment. The heuristic techniques
adapted to this environment are presented in Section V.
The details of the simulation setup used to evaluate our
heuristics are listed in Section VI. Section VII provides the
results of our simulation study and Section VIII concludes
the paper.

II. SYSTEM
The execution time of each task i, when executed

alone on machine j (one of the M machines in the HC
suite), is modeled as a random variable, denoted ηij . The
list of tasks that the user may select from is assumed
limited to a set of frequently requested algorithms such as
may be found in a research lab or military environment.
Consequently, we assume that the execution time random
variable for each task is well characterized. That is, we
assume that a probability mass function (pmf) is available
for each task execution time random variable on each ma-
chine (determined by historical, experimental, or analytical
techniques [12], [13]). In addition, each task execution
time (not completion time) is assumed independent, i.e.,
there is no inter-task communication. This assumption
of independence is valid for non-multitasking execution
mode, which is commonly considered in the literature
(e.g., [7], [14]).
In this environment, tasks arrive dynamically and the

exact sequence of task arrivals is not known in advance.
Each arriving task i is assigned a deadline for completion,
denoted δi, relative to its arrival time and its average
execution time. The goal of resource allocation heuristics
is to maximize the number of tasks that complete by
their assigned deadline. However, the system is assumed
severely over-subscribed such that not all tasks can com-
plete by their deadline. In addition, we employ a hard
deadline for task completions, i.e., if the system were to
fail to complete a task by its deadline, then we assume
that the task has no value.
All incoming tasks are first queued at a resource man-

ager for later assignment to any one of the M dedicated
heterogeneous machines for processing. (e.g., [15]). After
assignment, each task is placed in the input queue of its
assigned machine and all input data for the task are staged
to the machine in advance of task execution. For this
study, because the data required by each task is assumed
substantial, once a task has been queued for execution on

a machine it cannot be reassigned and the task must be
completed, even if its deadline will be missed. That is,
once the system attempts to execute a task by assigning
the task to a machine it must be completed.
Actual task execution times are dependent on the con-

tent of the data to be processed as well as its size (where
the exact details of this dependence are not known in
advance) and the machine that is to execute the task.
We assume that an accurate pmf describing the possible
execution times for each task on each of the heterogeneous
machines exists and is available to the resource manager
to aid in resource allocation decision making (several tech-
niques exist for generating such a probability distribution,
e.g., [13], [16]).
Uncertainty in task execution times can impact the

completion times of all tasks that share the same machine
for execution. For example, given multiple tasks assigned
to the same machine, a longer than expected execution
time for a task early in the queue may cause tasks later
in the queue to miss their deadlines. This effect is obvi-
ously compounded when multiple tasks take longer than
expected. To help mitigate the impacts of task execution
time uncertainty, in this study, including the currently
executing task, we chose to limit the number of tasks that
can be queued at any single machine. Any remaining tasks
are placed in a queue on the resource manager for future
assignment.
By limiting the number of tasks that can be queued at

each machine, at each time-step t(k), we effectively define
a batch of tasks at the resource manager, denoted B(k),
that is composed of the remaining tasks that are not already
in a machine queue. Based on this definition, a mapping
event occurs in the system when there is at least one task
in B(k) and at least one machine queue that has at least
one task less than the limit assigned to it.

III. RELATED WORK

The general problem of dynamic resource allocation for
independent tasks and heterogeneous computing systems
was studied in [11]. The primary objective in [11] was to
minimize system makespan, i.e., the total time required to
complete all tasks. This objective is very different from
the primary objective in our current research: maximize
the number of tasks that complete by their deadlines.
In addition, [11] only considered point estimates of task
execution times where as our current research is focused
on modeling task execution times as random variables.
In our previous research [17], similar to the environment

considered in this research, each dynamically arriving task
is assigned its own deadline relative to its arrival time and
the execution time of each task is modelled as a random
variable. However, in our previous work we focused on
predicting the performance of heuristics in a stochastic
dynamic environment. In this research, we are focused on
utilizing a stochastic robustness measure to aid in resource
allocation of a batch of tasks.
In [2], we defined a stochastic model of robustness

and demonstrated its use in an immediate-mode resource
allocation heuristic. In our prior work, we focused strictly
on the stochastic robustness model as it pertains to an
immediate-mode dynamic mapping environment. In that
environment, robustness values of zero occurred relatively
infrequently and did not drastically impact the perfor-
mance of the immediate-mode heuristic that leveraged



robustness for decision making. However, in this research,
we focus on a dynamic environment that is severely
over-subscribed and design batch-mode resource alloca-
tion heuristics suitable to this environment. Because this
environment is significantly over-subscribed, the frequency
of zero robustness values is much greater than in our prior
research, thus, forcing us to devise an alternate use of the
robustness measure that accounts for zero values in a more
graceful manner.
A robustness metric based on the Kolmorogov-Smirnov

(K-S) statistic is proposed in [18]. The K-S statistic is
computed for a resource allocation using the cumulative
distribution function (cdf) over the chosen performance
metric given an unperturbed system and a second cdf
over the chosen performance metric given that the system
has been perturbed. The authors use the magnitude of
the K-S statistic to measure the deviation of a system
from its expected behavior. The overall robustness of a
system is then characterized by measuring the perturbed
performance of the system for a number of different levels
of perturbation. Consequently, the technique is well suited
to the construction of a policy that accounts for variation
in system performance prior to its deployment. However,
in our environment, the exact mix of tasks that are to be
executed is not known in advance, thus, the perturbation
of the system is not easily determined in advance of sys-
tem execution making the application of their robustness
method problematic in a dynamic environment.
In Shi et al. [19], the authors present a resource al-

location problem where the workload to be executed is
described as an application consisting of a directed acyclic
graph of tasks. The performance metric of interest in this
system is makespan, i.e., the time required to complete all
tasks on the critical path of the application. Task execution
times in this system are estimated and the actual execu-
tion times may deviate considerably from their estimated
values. The authors propose two robustness measures
based on system slack for quantifying the robustness of a
schedule: (1) relative schedule tardiness and (2) schedule
miss rate. Relative schedule tardiness is calculated as the
difference between the expected makespan for the schedule
and the actual makespan. The schedule miss rate is based
on the count of the number of schedule executions whose
actual makespan is greater than the expected makespan.
Neither approach to calculating robustness in [19] is based
on stochastic information. In our current research, while
different from the heuristics in [19], we have adapted a
two phase greedy heuristic (MMU described in Section
V) that employs a slack based measure to make resource
allocation decisions.

IV. BACKGROUND MATHEMATICAL MODEL

A. Stochastic Task Completion Time
In this dynamic environment, we wish to define a

method for determining the completion time for a given
task i at time-step t(k). Because the execution time of each
task in the system is a random variable, the completion
time of task i is found as the convolution of the execution
time probability distributions [20] for all tasks either
currently executing or pending execution in advance of
task i on the same machine.
Let µ(k) denote the set of all tasks that are either

queued for execution or currently executing on any of the
M machines in the HC suite at time-step t(k). Let the

ordered list of tasks in µ(k) that were assigned to machine
j in advance of request i but that have not yet completed
execution as of t(k) be denoted µ

(k)
ij where the tasks in

µ
(k)
ij are listed in order of their assignment.
To find the completion time pmf for a currently ex-

ecuting task z on a given machine j, we must account
for impulses in the execution time pmf of task z that
would have occurred prior to the current time-step t(k).
For example, if task z began execution at time-step t(h)

(h < k), then we know that all impulses in the completion
time distribution for task z with values less than t(k) did
not occur. Thus, accurately describing the completion time
of task z at time-step t(k) requires that these past impulses
be removed from the pmf and the remaining distribution is
renormalized to 1. To find the completion time distribution
of task i at time-step t(k), we convolve the completion time
distribution for the currently executing task on machine j
with the execution time distributions of all pending tasks
in µ

(k)
ij with the execution time distribution for task i on

machine j.

B. Calculating Stochastic Robustness
To facilitate the derivation of our new robustness mea-

sure, defined in the next subsection, we summarize the
details of our previous robustness calculation from [2].
The robustness of a resource allocation µ(k) is defined by
the joint probability that all tasks will complete by their
assigned deadlines, as predicted at a given time-step t(k)

[2]. Recall that all tasks are independent and that there is
no inter-process communication among tasks. Thus, each
task execution is independent, however, because each task
has an individual deadline within a common machine,
the joint probability of completing all tasks on-time that
are assigned to the same machine is not independent. To
calculate the robustness for each individual machine j,
we convert the joint probability of completing all tasks
by their deadline into a combination of simpler known
probabilities.
Let r1j denote the currently executing task on machine

j at time-step t(k). The basis for this calculation is the
known probability of completing r1j by its deadline,
denoted p(r1j). Because the completion time distribution
for r1j is not dependent on any of the remaining tasks
assigned to this machine, we can find this probability
directly from its completion time pmf as given at time-
step t(k).
The joint probability of completing the first two tasks

by their deadlines, denoted p(r1j , r2j), is given by the
product of p(r1j) and the probability that r2j completes
by its deadline given that r1j completes by its deadline,
denoted p(r2j|r1j). To calculate p(r2j |r1j), we select the
portion of the completion time distribution for r1j (at time-
step t(k)) whose completion times are less than or equal
to the deadline for r1j . This portion of the probability
distribution is then renormalized to 1 to form the pmf
corresponding to p(r1j). Convolving the distribution of
p(r1j) with the execution time distribution of r2j gives
the completion time distribution for r2j at time-step t(k),
given that r1j completed by its deadline. The final step in
determining p(r2j |r1j) is to compare the completion time
distribution for r2j with its deadline. That is, p(r2j |r1j)



is found as the sum over the completion time distribu-
tion for r2j that corresponds to r2j completing by its
deadline. More generally, to calculate each p(rij |ri−1j),
we extract the portion of the completion time distribution
for ri−1j whose completion times are less than or equal
to the deadline for ri−1j . This portion of the probability
distribution is then renormalized to form the pmf corre-
sponding to p(ri−1j), denoted D[p(ri−1j)]. Note that if
p(ri−1j) = 0, then the above calculation must terminate
and return 0 because there is no probability of completing
all tasks by their assigned deadline.
Given nj application requests assigned to machine j,

we iteratively apply the product rule of probability [21] as
follows:

p(r1j , r2j) = p(r1j)p(r2j |r1j)

p(r1j , r2j , r3j) = p(r1j)p(r2j |r1j)p(r3j |r1j , r2j)

... =
...

p(r1j , r2j , · · · , rnjj) = p(r1j)p(r2j |r1j) · · ·

p(rnjj |r1j , r2j , · · · , rnj−1j).

Because of the independence across machines in the het-
erogeneous suite, we can define the stochastic robustness
of a resource allocation at a given time-step t(k), denoted
ρ(k), as the product of the joint probability associated
with each machine, i.e., the probability of all machines
completing their tasks by their deadlines is the product
of each machine finishing its tasks by their deadlines. Let
ρ

(k)
j denote the robustness of machine j at time-step t(k),
i.e., ρ(k)

j = p(r1j , r2j , · · · , rnjj) Formally,

ρ(k) =
∏

∀j

ρ
(k)
j . (1)

C. Expected Number of On-time Completions
In the above formulation of robustness, given a resource

allocation µ(k), if any task in µ(k) were to miss its
deadline prior to its completion, then the robustness of
µ(k) would be 0. However, in our resource allocation
problem, our goal is to maximize the number of tasks
that complete before their deadline and the system is
considered severely over-subscribed. Consequently, a re-
source allocation where, for example, only 1 task misses its
deadline is more valuable than a resource allocation where
10 tasks miss their deadline. However, using only the
above formulation of stochastic robustness, both alloca-
tions would have the same robustness value of 0 regardless
of the number of tasks that each completes on-time.
To extend stochastic robustness into environments that

are over-subscribed, we can account for tasks where
p(rij) = 0 separately by removing them from the ro-
bustness calculation. Intuitively, when we remove a single
task from the stochastic robustness calculation, we are
approximating the probability that all but one task will
complete by their deadline instead of all of the tasks.
Using this technique, we can create an alternate measure
of robustness that computes the expected number of tasks
to make their deadline for a given resource allocation.
In this quantification of robustness, if the probability of
completing a given task i on machine j is 0, then we do

not include the task in our joint probability calculation as
before. Instead, we account for the missed task deadline
separately and proceed with our robustness calculation as
in the previous subsection where we use the completion
time distribution of task rij , denoted C(rij), in place of
the probability distribution for p(rij) (which would be 0).
Letmj denote the number of tasks that miss their deadline
on machine j at time-step t(k). Thus, in this quantification
of robustness, we limit the joint probability calculation of
ρ
(k)
j to the nj −mj tasks that have a non-zero probability
of completing by their deadline.
The pseudo-code describing this procedure is listed in

Algorithm 1. Given nj tasks pending or executing on
machine j at time-step t(k), the expected number of task
completions can be found in the following manner. As
before, let r1j denote the currently executing task on
machine j, let Cj denote the completion time of task i
on machine j, and let robust(δx, x) denote the procedure
for finding D[p(x)].
We begin by setting ρ

(k)
j to 1 and mj to 0. We first

find C(r1j) as before and calculate p(r1j). If p(r1j) = 0,
then we incrementmj by one and proceed using C(r1j) in
place of D[p(r1j)] leaving ρ

(k)
j unmodified. If p(r1j) > 0,

then we proceed to the next step using the pmf for p(r1j)
and multiply ρj by p(r1j). In general, for a given task rij ,
if p(rij) > 0, then we proceed to the next task using the
pmf for p(rij) and multiply ρ

(k)
j by p(rij). Alternatively,

if p(rij) = 0, then we proceed using C(rij), leave ρ
(k)
j

unmodified, and increment mj by one. The procedure
continues through task rnjj . Using mj , ρ

(k)
j , and nj , we

compute the expected number of tasks to complete by their
deadline as ρ

(k)
j (nj − mj).

V. HEURISTICS
The total number of expected on-time task completions

at time-step t(k) is given as
∑

∀j

ρ
(k)
j (nj − mj). (2)

Thus, the overall robustness of a resource allocation µ(k)

can be quantified as the count of the tasks in µ(k) that are
expected to complete on-time.

A. MinCompletion-MinCompletion (MM)
The MinCompletion-MinCompletion (MM) heuristic

was adapted from Algorithm E in [4]. The heuristic
operates in two basic phases where in phase 1 the heuristic
identifies the machine that maximizes the performance
objective for each task ignoring the others. In phase
2, the heuristic identifies the task-machine pairing that
maximizes the performance objective over all task machine
pairs identified in phase 1.
In the MM heuristic, the performance objective of each

phase is to minimize the expected completion time. At
each mapping event t(k), MM first copies the batch to a
separate queue Q and finds the machine j that provides
the minimum expected completion time for each task in Q.
From this set of task-machine pairs, MM selects the pair
that provides the overall minimum expected completion
time and provisionally assigns the task to its selected



Algorithm 1 Pseudo-code for calculating the number of
tasks that are expected to complete on time for a given
machine j. The symbol ∗ is meant to denote convolution.

ρ
(k)
j ← 1

m ← 0
i = 1
D[p(r1j)] ← robust (δ1, C(r1j))
if p(r1j) > 0 then

Cj ← D[p(r1j)]
else

Cj ← C(r1j)
end if
while i < nj do

i ← i + 1
D[p(rij)] ← robust (δi, Cj ∗ rij)
if p(rij) = 0 then

mj ← mj + 1
Cj ← Cj ∗ rij

else
ρ
(k)
j ← ρ

(k)
j × p(rij)

Cj ← D[p(rij)]
end if

end while
return ρ

(k)
j × (nj − mj)

machine. The process is repeated until all of the tasks
in Q have been provisionally assigned. To complete the
mapping event, MM iterates through all machine queues
and for each queue where the current length is less than
four, tasks are moved from the provisional assignment
to the available machine queue until the length of the
machine queue is equal to the limit. The stopping criteria
for the procedure occurs when there are no tasks left in Q,
there are no remaining machines with free slots, or there
are no tasks that get assigned to a machine with a free
slot.
The basic pseudo-code for the two-phase greedy heuris-

tic is listed in Algorithm 2. In the MM heuristic, the phase1
procedure returns the machine that minimizes the expected
completion time for the provided task. The phase2 proce-
dure returns the task-machine pair that provides the overall
minimum expected completion time for all pairs identified
in phase1.

B. MinCompletion-Maximum Urgency (MMU)
The MinCompletion-Maximum Urgency (MMU)

heuristic is also a two phase greedy heuristic that operates
using expected execution times and limits the number of
tasks pending completion on each machine to four. We
define task urgency as 1 over the difference between the
expected completion time for the task and its deadline.
Effectively, MMU emphasizes allocating tasks with the
minimum slack. That is, given task i assigned to machine
j, the urgency of task i is given as

1

δi − E[C(rij)]
. (3)

Algorithm 2 Pseudo-code for the two phase greedy pro-
cedure.
1: Q ← B(k)

2: while stopping criteria not met do
3: pairs ← ∅
4: for task ti in Q do
5: mj ← phase1(ti)
6: pairs ← pairs ∪ (ti, mj)
7: end for
8: (tx, my) ← phase2(pairs)
9: if queue size for my < 4 then
10: map tx to my

11: end if
12: remove tx from Q
13: end while

In the first phase of MMU, the heuristic identifies the
minimum expected completion time machine for each task
in B(k). In the second phase, based on the task completion
times found in phase 1, MMU selects the assignment
whose task urgency is the greatest, i.e., has the smallest
slack. The pseudo-code for the MMU heuristic is given
by Algorithm 2 where phase1 is defined as the minimum
expected completion time and phase2 is defined as the
maximum expected urgency.

C. MinCompletion-SoonestDeadline (MSD)
The Limited Queue Expected MinCompletion-Soonest

Deadline heuristic (MSD) is a variation of the two phase
greedy heuristic where we favor tasks with the soonest
deadline. In the first phase, the heuristic selects the ma-
chine that provides the minimum expected completion
time for each task ignoring the others. In the second phase,
from the list of potential task-machine pairs found in the
first phase, the heuristic makes the provisional assignment
whose task has the soonest deadline. The pseudo-code for
the MSD heuristic is given by Algorithm 2 where phase1
is defined as the expected minimum completion time
procedure and phase2 is defined as the soonest deadline.
In the event that two tasks have the same deadline and
require the same machine, ties are broken by assigning
the task that has the minimum expected completion time.

D. Maximum On-time Completions (MOC)
The Maximum On-time Completion heuristic (MOC)

also operates in two phases. However, in the first phase,
for each task, we identify the machine that will provide
the task with the highest probability of completing by its
deadline (ρj from Algorithm 1). From the set of task-
machine pairs identified in phase 1, MOC first sorts the
collection of assignments based on the machine required
for the assignment. For each machine j where the number
of tasks pending completion is less than four, MOC
identifies the three tasks (from the task-machine pairs
identified in step 1) that have the highest probability of an
on-time completion that is greater than 30%. Using this list
of tasks, MOC iterates through all possible orderings of
these tasks on machine j to identify the ordering that has
the highest number of expected on-time completions using
the value returned by Algorithm 1. Using the identified



ordering, MOC assigns the first task in the ordering to its
selected machine and returns the remainder of the tasks
to B(k). The procedure continues until either there are
no tasks left in B(k), there are no remaining machines
with free slots, or there are no tasks that get assigned to
a machine with a free slot.

VI. SIMULATION SETUP
Our simulation environment consisted of eight machines

(i.e., M = 8) that collectively exhibited inconsistent
heterogeneous performance [22]; e.g., machine A may
be better than machine B for application 1 but not for
application 2. In our simulation study, the task execution
time distributions are assumed to be unimodal. The distri-
butions were generated based on the gamma distribution
where the mean of the gamma distribution was set based
on execution time results for the 12 SPECint benchmark
applications for a sample set of eight machines. Using
these distributions, we generated 500 random sample exe-
cution times for each application on each machine [23]
where the scale parameter of each gamma distribution
was selected uniformly at random from the range [1,20].
After generating the sample execution times, we applied
a histogram [13] to the result to produce probability mass
functions that approximate the original probability density
functions—one for each application on each machine.
Each benchmark application served as a model for each
task type to be executed by the system, creating an eight
machine by twelve task type matrix of execution time
pmfs.
Our simulation study consisted of 20 independent trials.

In each simulation trial, task arrivals were assumed to
follow a Poisson process where the system as a whole
was over-subscribed, i.e., the system is unable to complete
all tasks by their deadlines. The exact mix of tasks to
be executed was selected uniformly at random from the
available task types. The actual task execution times were
found by sampling the appropriate pmf describing the
possible execution times for the task type and machine
combination. In each simulation trial, an absolute deadline
for each request was established as the sum of the arrival
time of the request and the average expected execution
time across the four best machines, i.e., the four machines
with the shortest average task execution times.
Each simulation trial included 2000 tasks that arrived

over a period of approximately 20,000 time-steps. In all
trials, the arrival rate of tasks was such that the system
remained over-subscribed and none of the heuristics tried
were able to complete all tasks by their deadline.

VII. RESULTS
Simulation results for the heuristics are presented in

Figure 1. From the figure, we can see that the MOC
heuristic significantly outperforms the other heuristics,
completing an average of 1401 tasks on-time for each trial
(out of a possible 2000) with a 95% confidence interval
of ±19 tasks.
For comparison, we also provide the results for an

immediate-mode heuristic based on minimum expected
completion times. In MECT, each task is mapped im-
mediately upon its arrival to the machine that provides
the minimum expected completion time for the task. As
can be seen from the plot of our results, MECT is

Fig. 1. A comparison of our heuristic results over 20 simulation
trials where task execution time distributions are based on unimodal
distributions. The results achieved for each heuristic are plotted along
with their 95% confidence intervals.

unable to complete a significant portion of the tasks on-
time, suggesting the difficulty of the resource allocation
problem. On average MECT completed only 100 tasks on-
time out of a possible 2000 with a 95% confidence interval
of ±5 tasks.
The remaining heuristics all performed comparably with

MM performing the best on average, completing an aver-
age of 1175 tasks by their deadline with a 95% confidence
interval of plus or minus 42 tasks. The MMU heuristic
performed comparably by completing an average of 1139
tasks on-time with a 95% confidence interval of ±55
tasks. The MESD heuristic performed surprisingly well
completing an average of 1131 tasks on-time with a 95%
confidence interval of ±49 tasks.
The relatively good performance of these heuristics

was surprising. The limit on the number of preassigned
tasks may have enabled them to reduce the amount of
uncertainty in each of the completion time calculations,
thus, allowing them to complete a significant number of
tasks on time. Further, by focusing on first completing
those tasks whose completion times are the smallest, MM
naturally tends to favor tasks that can be completed by
their deadline and that have the smallest impact on the
remaining tasks. However, this combination limits the per-
formance of MM in an over-subscribed environment such
as ours. For example, given two tasks that are competing
for the same machine where one has a larger completion
time than the other, MM will always assign the smaller
task first. However, throughout the simulation trials there
are a significant number of situations where assigning the
larger task first would result in MM completing both tasks
on time instead of just one.
Comparing the results of the MM heuristic with the

immediate-mode MECT heuristic suggests the over all
value of our batch-mode approach for this environment.



That is, both MM and MECT are based on expected exe-
cution time values, however, MM performs dramatically
better than MECT. By extending the two-phase greedy
approach with our robustness models, we are able to
further improve our results by an additional 19%.

VIII. CONCLUSIONS
In this work, we designed a model of stochastic robust-

ness that facilitates its calculation and use during resource
allocation in an over-subscribed dynamic resource allo-
cation environment. We applied this model of stochastic
robustness to the design of a novel resource allocation
heuristic capable of assigning requests to machines in
a manner that minimizes the number of requests that
miss their deadline. The MOC heuristic showed significant
promise for achieving this desired result in an over-
subscribed dynamic environment.
Our results demonstrate the advantages of a robustness-

based resource allocation approach in a stochastic en-
vironment. This research also demonstrates the viability
of creating new resource allocation heuristics based on
stochastic robustness in a dynamic environment. Exten-
sions to this work may consider the impacts of misleading
pmfs on heuristics that attempt to leverage the stochastic
robustness model to make resource allocation decisions. In
addition, we wish to further explore the use of queue limits
to mitigate the impact of uncertainty in task execution
times.
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L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and B. Yao, Characterizing Resource Allocation Heuristics
for Heterogeneous Computing Systems, ser. Advances in Comput-
ers. Amsterdam, The Netherlands: Elsevier, 2005, pp. 91–128.

[6] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright, “Probabilis-
tic scheduling guarantees for fault-tolerant real-time systems,” in
Proceedings of DCCS-7,IFIP International Working Conference on
Dependable Computing for Critical Applications, 1999, pp. 361–
378.
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