
Decentralized Market-Based Resource Allocation
in a Heterogeneous Computing System

James Smith1,2, Edwin K. P. Chong2,4, Anthony A. Maciejewski2, and Howard Jay Siegel2,3

1DigitalGlobe Colorado State University
Longmont, CO 80503 USA 2Dept. of Electrical and Computer Engineering

Email: jtsmith@digitalglobe.com 3Dept. of Computer Science
4Mathematics Department

Fort Collins, CO 80523–1373, USA
Email: {echong, aam, hj}@engr.colostate.edu

Abstract

We present a decentralized market-based ap-
proach to resource allocation in a heterogeneous
overlay network. The presented resource allocation
strategy assigns overlay network resources to traf-
fic dynamically based on current utilization, thus,
enabling the system to accommodate fluctuating de-
mand for its resources. We present a mathemat-
ical model of our resource allocation environment
that treats the allocation of system resources as a
constrained optimization problem. Our presented
resource allocation strategy is based on solving the
dual of this centralized optimization problem. The
solution to the dual of our centralized optimization
problem suggests a simple decentralized algorithm
for resource allocation that is extremely efficient.
Our results demonstrate the near optimality of the
proposed approach through extensive simulation of
a real-world environment. That is, the conducted
simulation study utilizes components taken from a
real-world middleware application environment and
clearly demonstrates the practicality of the approach
in a realistic setting.

1 Introduction

Recently, information technology (IT) systems
have begun to rely heavily on the concept of

This research was supported by the NSF under Grants
CNS-0615170 and ECCS-0700559, by the Colorado State
University Center for Robustness in Computer Systems
(funded by the Colorado Commission on Higher Education
Technology Advancement Group through the Colorado In-
stitute of Technology), and by the Colorado State University
George T. Abell Endowment.

Services Oriented Architecture (SOA). SOA is a
means of leveraging existing applications as services
within a distributed computing environment to de-
velop new applications. One mechanism commonly
used to integrate existing applications is known as
the enterprise services bus (ESB) [16]. Accord-
ing to the Business Integration Journal [8], “The
[ESB] supports the unifying integration infrastruc-
ture required for SOA and heterogeneous environ-
ments.” By relying on an ESB to implement a dis-
tributed application, service requesters within the
distributed application—using the ESB to commu-
nicate with service providers—can remain ignorant
of the details of the service providers, e.g., the phys-
ical location of the service provider. Instead, ser-
vice requesters depend on the abstract definition of
the service that they are using and trust the ESB
to forward their requests to an appropriate service
provider. Because the service requester is not de-
pendent on an explicit instance of a service provider,
multiple service providers could be deployed within
the ESB to provide additional capacity for a partic-
ular service.

An important aspect of an ESB implementation
is that it can be decentralized both to increase its re-
liability and to ensure its scalability [8]. A common
approach to increasing the reliability of a service is
to duplicate that service many times across many
hardware deployments—a technique often referred
to as replication [7].

Successfully replicating ESB components re-
quires maintaining network transparency [7], i.e.,
the user of the ESB infrastructure should be
shielded from the existence of any redundant com-
ponents used to provide the replicated ESB or its
attached services. To the user, the system should
appear as if it were a single highly available service
that always has sufficient capacity to process ser-

vice requests. Achieving this kind of transparency
in service delivery requires a mechanism for allow-
ing the ESB infrastructure to adapt to changes in
system load. That is, to transparently utilize repli-
cas within an ESB infrastructure, the replication in-
frastructure must provide a mechanism for routing
requests to their physical destination. In this work,
we focus on the allocation of ESB components to the
shipment of service requests; however, our presented
approach can easily be extended to enable multiple
service providers for a given service definition where
the ESB components apply an analogous approach
to allocating service requests to service providers.

This work investigates the application of a decen-
tralized market-based approach to resource alloca-
tion within a heterogeneous deployment of a repli-
cated ESB. In this system, service requesters send
tasks to service providers using an overlay network
provided by the ESB infrastructure. The decision of
how to allocate individual ESB component capacity
to service requests is made in a decentralized man-
ner based on a quantification of current resource
demand relative to current system capacity. Indi-
vidual service requesters select a transmission rate
through ESB components that maximizes their in-
dividual benefit, while the ESB components adjust
“prices” for network links and their own comput-
ing capacity to reflect current demand. Thus, price
setting enables service requester resource allocation
decision making by communicating a simple quan-
tification of current system congestion to the deci-
sion makers.

Figure 1 presents a graphical model of a simple
overlay network provided by a replicated ESB. Ser-
vice requesters are depicted in the figure as trian-
gles, service providers are shown as squares, and
ESB components are depicted as circles. Each ser-
vice requester is connected to a collection of ESB
components that “service” requests by dispatching
them to a service provider capable of completing
the request. The number of requests produced by
each service requester may vary with time accord-
ing to some unknown process. In this model, the
capacity of the ESB components to service incom-
ing requests may differ from one to another, i.e.,
the collection of ESB components are assumed het-
erogeneous in their performance [9, 11, 13]. Finally,
each ESB component is connected to a collection of
service providers by a finite-capacity link.

In a real-world computing environment, network
traffic is often triggered by world events outside the
control of the computing system. For example, a fi-
nancial market sell off could reasonably be expected
to result in an increase in network traffic communi-
cating market sell orders to the financial market.
In a similar manner, changes in the volume of ser-
vice requests that a replicated ESB must process is
a source of system uncertainty. That is, a resource
manager responsible for allocating ESB components

to service requests cannot accurately predict the up-
coming volume of requests that will need to be ser-
viced.

A system can be considered robust to perturba-
tions in system parameters, if the change in system
performance features due to this uncertainty is lim-
ited [1]. In this system, we utilize an overall perfor-
mance measure that accounts for requester priori-
ties, the number of requests being transferred, and
the quality of the network routes being used. Re-
quests are produced by service requesters at some
rate and transmitted to the ESB where they are
buffered before being forwarded on to their final des-
tination. Because the system is decentralized and
the production rate of service requests is changing
with time, it is possible for the system to experi-
ence contention for shared system resources. When
contention for shared resources occurs, potentially
due to changes in the production rate of requests,
it is possible for low-priority requests to inhibit the
transfer of high-priority requests causing the perfor-
mance measure to degrade.

Intuitively, the robustness [1, 4, 17, 18, 20] of the
decentralized allocation approach can be established
by answering the following three questions. What
behavior of the system makes it robust? What un-
certainties is the system robust against? Quanti-
tatively, exactly how robust is the system? Uncer-
tainty in how shared resources will collectively be
used by service requesters can directly impact the
system performance measure, given fluctuations in
service request production rates. In this system,
we might consider a resource allocation strategy ro-
bust as long as it maintains a performance measure
that is within X% of the optimal value, where X is
a user defined constraint on the acceptable perfor-
mance of the system. We can quantify robustness
in this environment as the proximity of the system
performance measure to its optimal value.

Our mechanism for resource allocation can be
thought of as a market-based approach where mar-
ket demand for shared resources helps the system
to set prices for those resources. It is common in
market-based approaches to instead rely on an auc-
tion to create a market where prices are set by the
highest bidder [10, 14]. In contrast, our approach
utilizes price setting based on duality theory. Our
approach is analogous to that used to implement
congestion control on the internet [21] and in ad
hoc sensor networks [5]. In our system model, price
variables are introduced to model market demand
for shared resources—prices are a simple quantifi-
cation of current demand for shared resources. For
example, as the number of requests through an ESB
component increases, the ESB component raises
its “price.” Conversely, if the number of requests
through an ESB component decreases, its quoted
price also decreases. In addition to measuring the
demand for the component itself, the ESB compo-

Figure 1. An example system where four service requesters are utilizing two ESB components to com-
municate with three service providers. The service requesters are shown as triangles, the ESB compo-
nents as circles, and the service providers as squares. The input links to the ESB components from the
service requesters each has a finite-capacity, denoted c(in)

re . The output links from the ESB components
to the service providers each has a finite-capacity denoted c(out)

ep . Finally, each ESB component has a
finite-capacity for servicing requests, denoted ce.

nent is also responsible for stating the demand for
the links from that ESB component to all of the
service providers that the component can commu-
nicate. The procedure used to calculate an optimal
pricing for resources will be presented. Individual
service requesters directly utilize the current pric-
ing information provided by the ESB components to
make local resource allocation decisions about how
best to assign their volume of requests within the
overlay network given current network utilization.

Although an analogous methodology has been
studied previously in the context of internet con-
gestion control, it has never been applied within
the context of an Enterprise Services Bus. A major
contribution in this work is the design of a decen-
tralized market-based approach to resource alloca-
tion. This approach is a novel use of market-based
control over shared resources within an ESB envi-
ronment. We also demonstrate through simulation
that our decentralized market-based control mech-
anism is capable of providing near optimal resource
management in an ESB setting.

In the next section, we present a more detailed
view of the system model that is used in section 3
to present our mathematical model of the system.
Section 4 presents a decentralized implementation

of our solution approach. Sections 5 and 6 present
our simulation setup and results for the evaluation
of this approach in a real-world system setting, with
conclusions presented in Section 8.

2 System Model

An example model of a replicated ESB overlay
network is shown in Figure 1. In this computing
system, there are three types of entities: service re-
questers, ESB components, and service providers.
Service requesters send requests to ESB components
that post the requests to the appropriate service
provider. It is helpful to consider a service requester
as an agent that is making service requests to the
ESB on behalf of an application that is external to
the replicated ESB system. That is, an external
application passes requests to the service requester
which makes routing decisions on behalf of the ap-
plication. In this way, the service requester can be
treated as a component of the ESB instead of as an
outside entity. Let R denote the set of all service
requesters, P the set of all service providers, and
E the set of all ESB components. In this system,
rates of requests from individual service requesters
are not required to be observable; instead, the sys-

tem only requires that each ESB component be able
to measure the number of requests that have arrived
to it at each time step—a value readily available
by inspection of the ESB component’s input buffer.
Each service requester r (r ∈ R) produces requests
for a service provider p (p ∈ P) at a rate of frp(t)
requests per unit of time. Service requesters are
modeled as having an output buffer, and all requests
produced by the requester are written to the output
buffer prior to transmission. Requests are transmit-
ted from the service requester’s output buffer using
the appropriate overlay network link to the input
buffer of the selected ESB component. Each ESB
component processes requests from its input buffer,
forwarding requests to its chosen service provider.

In the example of Figure 1, service requesters are
connected to all of the ESB components, i.e., there
is a finite-capacity link connecting each service re-
quester to each ESB component, where the finite
capacity is modeled as a constraint on the transmis-
sion rate through that link. Thus, a link between
a service requester r ∈ R and an ESB component
e ∈ E is subject to a capacity constraint c(in)

re such
that the rate of requests sent from service requester
r to ESB component e cannot exceed c(in)

re .
Requests received by an ESB component are

assumed to be buffered in a finite-capacity input
buffer for that component. Each ESB component
also maintains a finite-capacity output buffer for
storing requests that have been processed and are
ready to be transmitted to an appropriate service
provider. Each ESB component e ∈ E is subject to
its own capacity constraint on its computing capa-
bilities such that the rate at which e can process
requests is limited to ce. That is, an ESB compo-
nent e with processing capacity ce can move at most
ce requests from its input buffer to its output buffer
in a single time unit.

The outgoing links from each ESB component to
its attached service providers are subject to capac-
ity constraints. The link connecting an ESB com-
ponent e to a service provider p ∈ P has a finite
capacity c(out)

ep to move data from the output buffer
of ESB component e to the input buffer of service
provider p. Lastly, there are no modeled constraints
on the capacity of the service providers. That is,
for this model we chose to focus on applying the
market-based resource allocation strategy only to
the ESB components. However, it should become
clear that the presented approach could easily be
extended to include allocation decisions regarding
multiple service providers for the same class of ser-
vice.

In our model, there are two types of shared re-
sources, the ESB components and the links connect-
ing the ESB components and the service providers.
There is a difference between the advertised capac-
ity (ce and c(out)

ep) of shared resources and the phys-

ical capacity of a resource. The physical capacity
of any given shared resource can be viewed as the
“true” capacity afforded by the physical limitations
of the device, i.e., the physical capacity is an upper
bound on the performance of the device. It should
be clear that if a system were sized such that it
were required to operate at its physical limit for
the duration of its execution, then if that system
were ever asked to process more than that limit it
would be incapable. That is, it is incumbent upon
each ESB component e to construct its prices not
from its true capacity but instead from its adver-
tised capacity. Specifically, the advertised capacity
is given as some reasonable fraction of the true sys-
tem capacity, e.g., we can define the advertised ca-
pacity as ρ times the true capacity where ρ ∈ (0, 1)
is often called the “load factor.” By communicating
its availability in terms of the advertised capacity,
the ESB component is insulated from instantaneous
fluctuations that occur during the normal course of
system operation that might otherwise overwhelm
the component. The capacity for each shared re-
source used in our model (ce and c(out)

ep) is assumed
to be the advertised capacity.

The Information Technology (IT) industry is at-
tempting to recover the cost of maintaining Wide
Area Network (WAN) links by billing for network
traffic that is transported across these links. That
is, companies are beginning to monitor WAN traf-
fic volume in an attempt to bill customers for the
amount of data transferred across these expensive
network links. In a globally distributed system such
as a replicated ESB, network link costs need to be
accounted for during resource allocation. By intro-
ducing a pricing scheme for WAN links, the network
provider has inadvertently created a situation where
some links are more valuable than others. To help
illuminate the impact of such a decision, consider
the following simple example. Using the model of
Figure 1, assume that one ESB component is physi-
cally located in Fort Collins, CO, in the U.S.A., and
another is located in Bangalore, India. If a service
requester located in the U.S.A. intends to commu-
nicate with a service provider also in the U.S.A.,
then the lowest cost route may be through the ESB
component located in Fort Collins. By sending traf-
fic through this U.S.A. based ESB component a
network charge can be avoided. Although some-
what exaggerated, this example demonstrates the
heterogeneity of the available routes. The system
model accounts for this heterogeneity by incorpo-
rating a quantification of route quality into the op-
timization problem. The value of each route from
service requester r through ESB component e to a
service provider destination p is given a single nu-
meric value, denoted srep, which quantifies the qual-
ity (e.g., speed) of the route to the service requester.

The goal of the model is to help ascertain the op-
timal allocation of ESB components and associated

links to service providers for transmitting service
requests. Recall, each service requester r produces
frp(t) service requests per unit time for a particular
service provider p. This traffic is sent through some
ESB component in E and all of the traffic must be
eventually transmitted to its destination, e.g., some
service provider p. Thus, we can identify the per-
centage of requests from a service requester r sent
to a service provider p that are transmitted through
ESB component e, denoted grep in the model. The
goal of a resource management heuristic in this en-
vironment is to choose a combination of the grep

values such that the system-wide “utility” is maxi-
mized.

In our system model, we assume that a service re-
quester receives some utility from successfully trans-
ferring a request to a service provider. For example,
the service provider may provide a printer repair
service—the data being transferred by the service
requester might be a notification of a printer outage.
By successfully delivering the service requester’s re-
quest to the service provider, the provider can dis-
patch a technician to repair the broken printer. Ad-
ditionally, some service requesters may be more im-
portant than others, e.g., the system provider may
wish to provide to some special customers a higher
level of service than what is normally offered. That
is, each service requester’s traffic should be indi-
vidually prioritized. Let θrp denote the priority of
requests sent from service requester r (r ∈ R) to ser-
vice provider p (p ∈ P). The utility, denoted U(x),
quantifies the worth of receiving service quality x.

3 Centralized Optimization

Given the discussion of the previous section, we
pose the replicated ESB resource allocation prob-
lem as an optimization problem. The optimization
problem can directly be solved in a centralized ap-
proach to resource allocation by a system-wide re-
source manager. The centralized approach could be
a reasonable solution for the special case of a static
rate of requests from each service requester. That
is, if the rate of requests produced by all requesters
in the system remains constant, then it may be rea-
sonable to calculate a solution to the centralized
problem off-line. However, if the rate of requests
is changing with time, then the centralized solution
becomes infeasible to maintain for all systems of rea-
sonable size, i.e., the optimal solution to the prob-
lem changes faster than the centralized solution can
be calculated. Similarly, if the centralized problem
requires too many decision variables, i.e., there are
too many service requesters, service providers, or
ESB components, then it may be unreasonable to
calculate the solution in advance off-line. That is,
the centralized approach to resource allocation does
not scale well, in this environment. We will use the

centralized problem to motivate an alternative de-
centralized approach presented in the next section.

Using the definitions and system constraints from
the previous section, the following centralized opti-
mization problem can be defined, where each grep

is to be chosen such that system resources are allo-
cated optimally:

maximize
∑

r,p

θrpfrp(t)U

(
∑

e

grepsrep

)
(1)

subject to: ∀ r,p,
∑

e

grep = 1 (2)

∀ r,e,p, grep ≥ 0 (3)

∀ r,e,
∑

p

grepfrp(t) ≤ c(in)
re (4)

∀ p,e,
∑

r

grepfrp(t) ≤ c(out)
ep (5)

∀ e,
∑

r,p

grepfrp(t) ≤ ce (6)

In the proposed centralized problem, over-
all achieved service quality is calculated as the
weighted average of the service quality levels re-
ceived where the srep values provide the weights.
Equation (1) expresses the overall goal of the opti-
mization to maximize the realized utility given a col-
lection of service requesters each with their own pri-
ority. The constraint of Equation (2) ensures that
all of the requests from a given service requester
are routed through the overlay network. Finally,
Equations (4), (5), and (6) enforce the capacity con-
straints for each of the constrained system resources
and Equation (3) ensures that the grep values are
positive.

Because the rate of requests sent from each ser-
vice requester to each service provider, i.e., frp(t),
is a function of time, this centralized form of the
problem must be solved whenever any of the request
production rates change. However, for any problem
of reasonable size the computation time required to
solve this problem makes it difficult to complete the
solution prior to the request production rates chang-
ing again. In the next section, we identify an equiv-
alent solution that is much faster to calculate.

4 Decentralized Algorithm

4.1 Decentralized Approach

To transform the centralized optimization prob-
lem into a decentralized algorithm, we apply the La-
grangian multiplier method [2,3,6] to the centralized
optimization problem to define an equivalent opti-
mization problem that can be separated into |R| in-

dependent sub-problems. The constraints of Equa-
tions (4) and (5) in the centralized problem reflect
constraints on shared resources. The Lagrangian
method provides a way to introduce lagrange mul-
tipliers (interpreted as “prices”) for these shared re-
sources that can be directly accounted for in the
optimization criterion itself. An important feature
of this approach is that solving for the grep values
for each service requester no longer requires detailed
knowledge of the grep values of the other service re-
questers. These detailed values are instead replaced
by a collection of price vectors that are produced by
the ESB components, where the price vectors reflect
the current demand for the shared resources. Let πe

denote the price of ESB component e (∀e ∈ E) and
let qep be the price for a link from component e to
service provider p (∀e ∈ E , ∀p ∈ P). Each service
requester r must choose grep to solve the following
problem:

maximize
∑

p

θrpfrp(t)U

(
∑

e

grepsrep

)

−
∑

e,p

(πe + qep) grepfrp. (7)

Service requester r also must enforce the following
constraints corresponding to Equations (2), (3), and
(4) from the centralized problem,

∀ p,
∑

e

grep = 1 (8)

∀ e,p, grep ≥ 0 (9)

∀ e,
∑

p

grepfrp(t) ≤ c(in)
re . (10)

The prices πe and qep (∀e ∈ E ,∀p ∈ P) are ob-
tained from each ESB component e as input to the
above model in the form of πe + qep. An example
of this communication is shown in Figure 2. In this
example, service requester r1 is sending requests to
service provider p1 using two ESB components e1

and e2. To facilitate the allocation decisions made
by r1 each of the ESB components communicates
the price for using each of the shared resources that
it is responsible for in the system, e.g., the ESB
component and its link to p1. In this simple ex-
ample, there is only a single price to be communi-
cated to the service requester. In more complicated
systems, the ESB component is required to commu-
nicate prices for each complete route through the
system that involves the component.

The above optimization problem only depends on
the prices obtained from each ESB component and
information that is locally available to the service re-
quester. By reformulating the centralized optimiza-
tion problem in this manner, we are able to obtain a
collection of sub-problems whose combined solution

Figure 2. An example of the price update pro-
cedure. In the example, service requester r1

receives updates for the price of using ESB
component e1 and ESB component e2 to com-
municate with service provider p1.

is equivalent to the original centralized optimization
problem. The final required ingredient in this model
is an algorithm for computing the prices for each of
the ESB components and the links connecting them
to the service providers.

Each ESB component e is required to update
prices in the model for its shared resources such
that the prices reflect expected near-term future de-
mand. The price of each shared resource reflects the
amount of excess capacity that the resource has for
processing requests. If the demand for a shared re-
source is greater (less) than the supply, then the
price of the resource should increase (decrease). In
our approach, we utilize a constant step-size for ap-
plying price updates. That is, the price of each
shared resource is updated according to the differ-
ence between the capacity of the shared resource
and current demand for the resource scaled by a con-
stant factor. In our model, we differentiate between
updates to ESB component prices and link prices by
introducing two different constant step-size values,
one for the ESB component prices, denoted α, and
one for the link prices, denoted γ—both step-sizes
must be greater than 0. The ESB component e can
simply update prices πe and qep (∀p) using the fol-
lowing update procedure where [x]+ = max{x, 0}:

πe(t + 1) =

[
πe(t) − α

(
ce −

∑

rp

grepfrp(t)

)]

+

qep(t + 1) =

[
qep(t) − γ

(
c(out)
ep −

∑

r

grepfrp(t)

)]

+

The step-sizes α and γ determine how the sys-
tem will react to fluctuations in the demand for its
shared resources. Notice that the step-size deter-
mines the magnitude of price updates. That is, if
α or γ is too small the prices will be slow to react

to changes in demand leading to potentially large
buffer sizes. For example, if price updates are too
small and the demand for a resource is much greater
than its capacity then, the price for the shared re-
source may not increase enough to deter requesters
from using it. Consequently, the number of queued
requests in the input buffer of the shared resource
may increase because the resource is consistently
receiving more requests than it can process. The
values for α and γ need to be large enough to en-
able the system to react to substantial changes in
demand, i.e., increase the price enough to deter ex-
cessive demand. Care must also be taken to prevent
the opposite scenario, where prices are increased so
much that future demand for the shared resource
is reduced to 0. If α and γ are set too high, then
the system may thrash, i.e., demand may oscillate
between shared resources potentially overwhelming
some resource in any given time step.

4.2 Resource Management Using this
Approach

Each service requester r must have a procedure
for utilizing the results obtained by solving the lo-
cal optimization problem for the grep values. Be-
cause the service requester cannot send fractions of
a record, we need to approximate the direct use of
the grep decision variables. The simplest mechanism
for converting the grep decision variables into a re-
source allocation is to interpret their values as prob-
abilities. Recall that the grep values are constrained
to the interval [0,1]. Thus, each grep value can rep-
resent the probability that any given record will uti-
lize the route from service requester r through ESB
component e to service provider p. To make use
of the probability, service requester r generates a
uniform random number indexing into the available
routes according to the grep probabilities to select
a route for each request to be processed. Using the
grep values in this way will, over many sent records,
approximate the direct use of the grep values.

5 Simulation Setup

Several simulations were conducted to evaluate
both the accuracy of the implemented system as
well as the efficacy of the overall approach. To eval-
uate the efficacy of the approach in a realistic set-
ting requires establishing a variable production rate
for each service requester in the environment. The
variable production rate of records in the system
is modeled using a simple scaled sinusoid that pro-
vides a periodic change in record production. The
record production rate for each of the service re-
questers modeled in this simulation varies according
to a uniquely scaled sinusoid. The superposition
of the record production functions is presented in

Figure 3(a). Each point in the plot corresponds to
the number of records produced in the simulation at
that time step and presents a view of the load placed
on the overall system in that time step. The combi-
nation of sinusoids chosen is such that the summed
traffic is periodic, repeating the exact same pattern
of production approximately every 2200 time steps.

The plot of Figure 3(a) can be scaled according to
the priority of each service requester (θrp) produc-
ing a plot (Figure 3(b)) of the optimal utility given
homogeneous network routes, i.e., all routes are of
equal value (∀r, e, p srep = 1). Ideally, the solu-
tion found by the described decentralized routing
mechanism will track this optimal utility function.

The simulations conducted consisted of four ser-
vice requesters, two ESB components, and three ser-
vice providers where collective the production rate
of the service requesters is varied according to Fig-
ure 3(a). For this simulation, we compared the re-
sults of the centralized solution to the results of our
decentralized solution to demonstrate the effective-
ness of our approach. We did this by periodically
extracting the information required to produce the
centralized optimization problem from the details of
the simulation at a given time step. We solved these
instances of the centralized problem offline and com-
pared the centralized result to our decentralized ap-
proach.

6 Results

In a real-world environment, the rate of requests
submitted to the system will vary with time unpre-
dictably. To assess the viability of our approach in
this kind of environment, we modeled the produc-
tion rate of requests from service requesters as a
function of time. Thus, at each instant in time the
optimal allocation is given by a unique optimiza-
tion problem with its own unique solution. Conse-
quently, a centralized solution in this environment
is impractical because it would require recalculat-
ing the entire solution at every time-step. In con-
trast, in the decentralized approach each service re-
quester can effectively solve their own local opti-
mization problem using the prices provided by the
ESB components. The combined results of all of
the service requesters should be the same as the cen-
tralized solution—the decentralized implementation
should be capable of tracking the optimal solution
as it varies over time.

Figure 4 presents the results for a sample imple-
mentation where service requester production rates
are functions of time and all routes in the system
are of equal quality, i.e., all srep = 1 ∀r, e, p. The
three plots of Figure 4 present (a) the total number
of requests at each time step during the simulation,
(b) the realized utility over time, and (c) the av-
erage price for shared resources in the system over

Figure 3. The figure includes two plots, (a) the summed production rates over all service requesters
plotted versus simulation time step and (b) the summed production rates scaled by service requester
priority plotted versus simulation time step.

time.
Embedded within the plot of realized utility (Fig-

ure 4 (b)), we have plotted the exact centralized
solution overlaid as circles on top of the decentral-
ized solution. From the plots of the figure, we can
clearly see that the decentralized solution tracks the
interpolated centralized solution. However, there is
a slight (less than 1%) degradation in performance
due to the buffering of data within the system. That
is, each service requester service provider pair has a
different priority and in any given instant there may
be minor contention for a shared resource. When
this contention occurs some high priority traffic may
be delayed due to the system processing lower pri-
ority traffic first. Thus, the realized utility will be
temporarily reduced as a result of the delay but will
increase in some subsequent time step as the delayed
records arrive at their destination.

An alternative approach to evaluating the results
of the decentralized solution is possible when the
quality of the given routes are homogeneous, i.e.,
srep = 1 ∀r, e, p. In this case, it is possible to com-
pare the results of the decentralized solution to the
sum of the scaled request production rate over all
service requesters. In other words, we sum the de-
centralized realized utility over each time step for
the entire simulation and do the same for the scaled
request production rate. Ideally, these two values
should be identical given homogeneous routes, and
they are nearly in fact our results produce 99.5%
of the scaled production rate result, i.e., they are

nearly identical.
The complete simulation includes routes of dif-

fering quality, where the srep values differed from
one route to another. Recall that the srep values
appear in the utility function as a multiplier for the
grep values. In this way, the grep values are scaled
according to the srep values prior to calculating util-
ity. Consequently, a centralized controller might at-
tempt to try and maximize the likelihood that high
priority traffic will be assigned to its best route, thus
maximizing the realized utility. In Figure 5, we can
see that given heterogeneous routes the results of
the decentralized solution still effectively track the
results of the centralized solution.

In both Figures 4(c) and 5(c), we plotted the av-
erage shared resource price for the entire simulation.
Notice that the prices are periodic with a period
identical to that of the production rates plotted in
Figures 4(a) and 5(a) respectively. For these simu-
lations the system appears stable. That is, because
the request production rate is periodic, a stable sys-
tem would imply that the average shared resource
price would return to its starting point at the end
of the period. In our simulations, the initial con-
figuration of the system represents a slightly over-
provisioned system. Thus, the initial prices of the
shared resources are all 0. At the end of the period,
we should expect the average shared resource price
to return to 0 and it does. Recall that the peri-
odicity of the request production rate is such that
the pattern repeats approximately every 2200 time

Fi
gu

re
4.

Sa
m

pl
e

re
su

lt
s

fo
r

a
ho

m
og

en
eo

us
ne

tw
or

k,
i.e

.,
s r

e
p

=
1
∀r

,e
,p

,g
iv

en
se

rv
ic

e
re

qu
es

t
pr

od
uc

ti
on

ra
te

s
th

at
va

ry
as

fu
nc

ti
on

s
of

ti
m

e.
P

lo
t

(a
)

of
th

e
fig

ur
e

pr
es

en
ts

th
e

co
lle

ct
iv

e
re

qu
es

t
pr

od
uc

ti
on

ra
te

fo
r

th
e

sy
st

em
as

a
fu

nc
ti

on
of

ti
m

e.
P

lo
t

(b
)

pr
es

en
ts

th
e

re
al

iz
ed

ut
ili

ty
fo

r
ou

r
de

ce
nt

ra
liz

ed
ap

pr
oa

ch
(p

lo
tt

ed
as

a
lin

e)
.

P
er

io
di

ca
lly

,t
hr

ou
gh

ou
t

th
e

si
m

ul
at

io
n,

an
eq

ui
va

le
nt

ce
nt

ra
liz

ed
op

ti
m

iz
at

io
n

pr
ob

le
m

w
as

ex
tr

ac
te

d
fr

om
th

e
st

at
e

of
th

e
si

m
ul

at
io

n
at

a
gi

ve
n

ti
m

e-
st

ep
an

d
so

lv
ed

.
T

he
se

re
su

lt
s

ar
e

pl
ot

te
d

as
ci

rc
le

s
in

P
lo

t
(b

)
ov

er
la

id
on

to
p

of
th

e
de

ce
nt

ra
liz

ed
so

lu
ti

on
.

P
lo

t
(c

)
pr

es
en

ts
th

e
av

er
ag

e
sh

ar
ed

re
so

ur
ce

pr
ic

e
in

th
e

ne
tw

or
k

as
a

fu
nc

ti
on

of
ti

m
e.

Fi
gu

re
5.

Sa
m

pl
e

re
su

lt
s

fo
r

a
he

te
ro

ge
ne

ou
s

ne
tw

or
k,

i.e
.,

ea
ch

th
ro

ug
h

th
e

ne
tw

or
k

co
nn

ec
ti

ng
a

se
rv

ic
e

pr
ov

id
er

to
a

se
rv

ic
e

re
qu

es
te

r
ha

s
a

un
iq

ue
se

rv
ic

e
qu

al
ity

as
so

ci
at

ed
w

it
h

it
.

P
lo

t
(a

)
of

th
e

fig
ur

e
pr

es
en

ts
th

e
co

lle
ct

iv
e

re
qu

es
t

pr
od

uc
ti

on
ra

te
fo

r
th

e
sy

st
em

as
a

fu
nc

ti
on

of
ti

m
e.

P
lo

t
(b

)
pr

es
en

ts
th

e
re

al
iz

ed
ut

ili
ty

fo
r

ou
r

de
ce

nt
ra

liz
ed

ap
pr

oa
ch

(p
lo

tt
ed

as
a

lin
e)

.
P
er

io
di

ca
lly

,
th

ro
ug

ho
ut

th
e

si
m

ul
at

io
n,

an
eq

ui
va

le
nt

ce
nt

ra
liz

ed
op

ti
m

iz
at

io
n

pr
ob

le
m

w
as

ex
tr

ac
te

d
fr

om
th

e
st

at
e

of
th

e
si

m
ul

at
io

n
at

a
gi

ve
n

ti
m

e-
st

ep
an

d
so

lv
ed

.
T

he
se

re
su

lt
s

ar
e

pl
ot

te
d

as
ci

rc
le

s
in

P
lo

t
(b

)
ov

er
la

id
on

to
p

of
th

e
de

ce
nt

ra
liz

ed
so

lu
ti

on
.

P
lo

t
(c

)
pr

es
en

ts
th

e
av

er
ag

e
sh

ar
ed

re
so

ur
ce

pr
ic

e
in

th
e

ne
tw

or
k

as
a

fu
nc

ti
on

of
ti

m
e.

steps; similarly the average shared resource price
is periodic repeating the exact same pattern every
2200 time steps.

7 Related Work

A related field to the study of an Enterprise Ser-
vices Bus is that of a Content Delivery Network
(CDN) commonly used to improve the apparent
performance and reliability of web sites by distribut-
ing their content throughout the world wide web.
In a CDN, web-site content is cached at replica
servers that are capable of replying to web requests
on behalf of the owning web site. In [15], the au-
thors introduce the concept of a collaborative CDN
(CCDN). A CCDN is described as being an overlay
network that utilizes end-user machines in a peer-
to-peer fashion to provide a CDN across a wide-area
network. In the Globule system, user requests for
data available on the CCDN are delivered to replica
servers using a redirection service capable of HTTP
redirection. In [19], the authors present the AS-path
length heuristic used in Globule to provide a redi-
rection policy for user requests. The AS-path length
heuristic greedily redirects user requests to the clos-
est replica server available in the CDN where prox-
imity is defined in terms of the number of network
hops between the requester and the replica. This
simple greedy approach does not account for con-
tention among the shared resources of the CCDN,
i.e., the replica servers. Because the Globule sys-
tem is an instance of an overlay network it can be
modeled as a transshipment network flow problem.
By modeling an overlay network in this manner, our
market based resource allocation technique can be
applied to the routing of web-site requests to replica
servers based on current network load where the
proximity of the requester to the caches and the
network bandwidth of the caches can be used to
construct a quality value for each route in the CDN,
i.e., srep. In this way, our approach can account for
both the proximity of replicas to users as well as any
contention for the shared resources of the CCDN.

Another approach to market based resource allo-
cation involves the use of an auction as opposed to
price setting. The Tycoon resource allocation sys-
tem presented in [14] provides such an auction based
market for resource allocation in a distributed sys-
tem. In the Tycoon system, users bid for the right to
use compute resources within the Tycoon network.
Bids are accepted by a collection of auctioneers that
manage access to Tycoon compute resources. In an
auction system, the auctioneer must accept bids for
a resource for some period of time before closing
the auction. The waiting period for an auction to
close is acceptable as long as the time required to
complete the auction is less than that of the task
to be executed. In our environment, tasks are ex-

tremely short lived, e.g., the time required to pro-
duce a static web page or deliver a message in an
overlay network. Consequently, the time delays in-
curred by an auction for a resource are infeasible
within our context. However, prices for shared re-
sources are set within our network based on current
demand. Thus, our price setting approach is more
analogous to a bid-ask auction system where the
resource seller sets an asking price and the buyer
accepts that price by purchasing the right to that
resource. In this way, as demand for a shared re-
source fluctuates so do the prices for that resource.

In [12], a system called WebSeAl is introduced
that provides resource allocation in a CDN. One
of the many claims of the WebSeAl system is its
ability to balance the request load for a web site
across multiple geographically dispersed replica web
servers. Their approach to resource management of
the server pool is to introduce prices for the use
of servers in their network that force the clients to
route their requests based on this price information.
Clients in the WebSeAl environment make routing
decisions based on a combination of performance
data about the response time of each replica server
and a weighting factor for each replica. The au-
thors assume that clients in the WebSeAl environ-
ment will be “sensitive” to the weighting factor and
account for current system weights while making re-
source allocation decisions. By their own admission
the WebSeAl environment is therefore best suited to
serving web sites where there is no incentive to cir-
cumvent the balancing aspects of the system, e.g.,
web sites delivered on a corporate intranet. By ig-
noring the weighting factor a client may instead re-
quest solely based on selfish performance data, i.e.,
always selecting the replica that provides the best
possible performance to the client.

Like the WebSeAl environment our system uti-
lizes a price setting scheme to enable clients in the
system to make routing decisions. However, unlike
WEbSeAl prices in our environment are set based on
direct feedback from the system regarding current
demand for shared resources. Further, the clients
(service requesters) in our system solve a local op-
timization problem that leverages current prices for
shared resources to account for network congestion.
By solving the local optimization problem to maxi-
mize their individual utility, the system as a whole
is able to maximize its realized utility.

8 Conclusion

In this paper, we have demonstrated a technique
for resource allocation in an overlay network that
is derived from Lagrangian optimization techniques
similar to those of internet congestion control. Our
approach has some clear advantages over some ob-
vious solutions for routing data within an overlay

network. Principally, our decentralized approach
is capable of producing a near optimal assignment
while still maintaining some of the more attractive
attributes of a decentralized solution, e.g., scalabil-
ity and reliability. Throughout this paper we have
assumed that a feasible solution to the centralized
allocation problem exists. In future work, we will re-
move this assumption and consider problems where
the system may require additional capacity to con-
vert an infeasible problem into a feasible one, i.e.,
by adding additional ESB components to increase
system capacity.

References

[1] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K.
Kim. Measuring the robustness of a resource al-
location. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(7):630–641, July 2004.

[2] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, second edition, 2003.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel
and Distributed Computation: Numerical Methods.
Prentice Hall, Englewood Cliffs, NJ, USA, first edi-
tion, 1989.

[4] L. Bölöni and D. Marinescu. Robust scheduling
of metaprograms. Journal of Scheduling, 5(5):395–
412, Sept. 2002.

[5] E. K. P. Chong and B. E. Brewington. Decentral-
ized rate control for tracking and surveillance net-
works. Ad Hoc Networks, special issue on Recent
Advances in Wireless Sensor Networks, (6):910–
928, Aug. 2007.

[6] E. K. P. Chong and S. H. Zak. An Introduction to
Optimization. John Wiley, New York, NY, second
edition, 2001.

[7] G. Coullouris, J. Dollimore, and T. Kindberg. Dis-
tributed Systems Concepts and Design. Addison
Wesley, Harlow, England, fourth edition, 2005.

[8] K. Emo. The ‘enterprise-class’ service bus: IT’s
direct route to SOA. Business Integration Journal,
Oct. 2005.

[9] M. M. Eshaghian, editor. Heterogeneous Comput-
ing. Artech House, Norwood, MA, 1996.

[10] M. Feldman, K. Lai, and L. Zhang. A price-
anticipating resource allocation mechanism for dis-
tributed shared clusters. In EC ’05: Proceedings of
the 6th ACM conference on Electronic commerce,
pages 127–136, New York, NY, USA, 2005. ACM
Press.

[11] R. F. Freund and H. J. Siegel. Heterogeneous pro-
cessing. IEEE Computer, 26(6):13–17, June 1993.

[12] M. Karaul, Y. A. Korilis, and A. Orda. A market-
based architecture for management of geographi-
cally dispersed, replicated web servers. Decision
Support Systems, 28(1-2):191–204, Mar. 2000.

[13] A. Khokhar, V. K. Prasanna, M. E. Shaaban, and
C. Wang. Heterogeneous computing: Challenges

and opportunities. IEEE Computer, 26(6):18–27,
June 1993.

[14] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and
B. A. Huberman. Tycoon: an implementation of a
distributed, market-based resource allocation sys-
tem. Multiagent and Grid Systems, 1(3):169–182,
2005.

[15] G. Pierre and M. van Steen. Globule: a collabora-
tive content delivery network. IEEE Communica-
tions Magazine, 44(8):127–133, Aug. 2006.

[16] M. T. Schmidt, B. Hutchison, P. Lambros, and
R. Phippen. The enterprise service bus: Making
service-oriented architecture real. IBM Systems
Journal, 44(4):781–797, 2005.

[17] V. Shestak, H. J. Siegel, A. A. Maciejewski, and
S. Ali. The robustness of resource allocations in
parallel and distributed computing systems. In
Architecture of Computing Systems – ARCS 2006,
19th International Conference Proceedings, pages
17–30, Mar. 2006.

[18] V. Shestak, J. Smith, H. J. Siegel, and A. A. Ma-
ciejewski. A stochastic approach to measuring the
robustness of resource allocations in distributed
systems. In Proceedings of the 2006 International
Conference on Parallel Processing (ICPP 2006),
pages 6–12, Aug. 2006.

[19] S. Sivisubramanian, B. van Halderen, and
G. Pierre. Globule: A user-centric content deliv-
ery network. In Proceedings of the 4th International
Systems Administration and Network Engineering
Conference (SANE 2004), 2004.

[20] J. Smith, L. D. Briceño, A. A. Maciejewski, and
H. J. Siegel. Measuring the robustness of resource
allocations in a stochastic dynamic environment. In
Proceedings of the 21st International Parallel and
Distributed Processing Symposium (IPDPS 2007),
Mar. 2007.

[21] R. Srikant. The Mathematics of Internet Conges-
tion Control. Birkhauser, Boston, MA, 2003.

