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Abstract—This research investigates the problem of ro-
bust dynamic resource allocation for heterogeneous dis-
tributed computing systems operating under imposed con-
straints. Often, such systems are expected to function in
an environment where uncertainty in system parameters
is common. In such an environment, the amount of pro-
cessing required to complete an application may fluctuate
substantially. Determining a resource allocation that ac-
counts for this uncertainty—in a way that can provide
a probability that a given level of service is achieved—is
an important area of research. We define a mathematical
model of stochastic robustness appropriate for a dynamic
environment that can be used during resource allocation
to aid heuristic decision making. In addition, we design a
novel technique for maximizing stochastic robustness in this
environment. Our performance results for this technique
are compared with several well known resource allocation
techniques in a simulated environment that models a
heterogeneous distributed computing system.

Keywords: robustness, heterogeneous computing, resource
management, dynamic resource allocation, distributed comput-
ing

I. INTRODUCTION

This work was motivated by a heterogeneous paral-
lel and distributed computing system used for image
processing. In this system, user requests for processing
are queued to a resource manager for assignment to
any one of a collection of dedicated machines. Each
request consists of an application to be executed (e.g.,
compression, decompression, rotation) and an image to
be processed. The list of available image processing
applications that the user may select from is limited to
a set of frequently requested algorithms such as may be
found in a research lab or military environment.

Often, heterogeneous, distributed computing systems
must operate in environments where uncertainty in sys-
tem parameters is common. Robustness in this context
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can be defined as the degree to which a system can
function correctly in the presence of parameter values
different from those assumed [1]. In this research, we
define a stochastic robustness metric [2], [3] for quantify-
ing the robustness of a resource allocation in a stochastic
dynamic environment. Intuitively, the stochastic robust-
ness metric gives the probability that a given resource
allocation will complete all assigned applications by their
deadline.

Any claim of robustness for a given system must
answer these three fundamental questions [4]: (a) What
behavior makes the system robust? (b) What are the
uncertainties that the system is robust against? (c) Quan-
titatively, exactly how robust is the system? Robust
behavior for a resource allocation in this environment
can be expressed in terms of the number of applications
that complete by their assigned deadline. That is, a robust
resource allocation is one that is capable of completing
all applications by their assigned deadline. Application
execution times are a known source of uncertainty in
the system and may have an impact on our stated
performance objective. The robustness of a resource
allocation can be quantified as the joint probability
that all applications will complete by their deadline, as
predicted at a given point in time.

In this environment, the exact execution time of any
given application is dependent on the details of the data
(including the size and actual content) that is to be
processed by the application and the machine that is
to execute the application. Thus, the execution times
of these applications may be highly variable and, as
such, are treated as random variables. Because the list
of applications that may be requested is limited, the
execution time random variable for each application is
assumed to be well characterized. That is, we assume
that a probability mass function (pmf) is available for
each application execution time random variable on
each machine (determined by historical, experimental,
or analytical techniques [5], [6]).

In this system, users submit requests to process a
provided data set by one of a set of well-known ap-
plications. The exact sequence of user requests for pro-
cessing are unknown prior to their arrival, i.e., request
arrival times are not known in advance. Each arriving
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request is assigned a deadline based on an agreement
between the service provider and the customer. The time
of each deadline is determined relative to the arrival
time of the request, the size of the data that is to
be processed, and the expected execution time of the
application requested (averaged across all machines).
The service provider requires that each request complete
by its assigned deadline. However, if the system were
to fail to complete a request by its deadline, then the
request must be completed on a “best effort” basis, i.e.,
as close to the original deadline as possible. That is, the
first commitment of the service provider is to complete
the request and second to complete the request by an
agreed to deadline, i.e., an instance of a soft deadline
[7].

From this set of requirements, we formulate a ro-
bustness metric for resource allocations in terms of the
probability that the allocation will complete all assigned
requests by their deadlines. We use this formulation of
the stochastic robustness metric to design a resource
allocation heuristic capable of allocating a dynamically
arriving set of application requests to a heterogeneous
computing (HC) system. In general, the problem of
resource allocation in the field of heterogeneous parallel
and distributed computing is NP-complete (e.g., [8], [9]),
therefore, the development of heuristic techniques to find
near-optimal solutions represents a large body of current
research (e.g., [9]–[17]).

The major contributions of this work include: (1) a
mathematical model for quantifying the robustness of
resource allocations in a stochastic dynamic environment
that can be used during resource allocation to guide
the resource allocation and (2) the design of a novel
resource allocation technique based on this formulation
of robustness. Specifically, we propose a novel technique
that attempts to greedily maximize the robustness of
the system, referred to as the MaxRobust heuristic. Our
results in Section VI clearly suggest the viability of this
approach in this environment through comparison with
a number of commonly used techniques.

In the next section, we present an overview of the
system model used to evaluate the chosen approach. Sec-
tion III describes our mathematical model of robustness
in a dynamic environment. The MaxRobust heuristic
based on this model of robustness is presented in Section
IV along with four other commonly used techniques.
The details of the simulation setup used to evaluate our
heuristics are listed in Section V. Section VI provides
the results of our simulation study. A sampling of the
related work is given in Section VII and Section VIII
concludes the paper.

II. SYSTEM

The computing system used in this work is com-
prised of a collection of heterogeneous machines that
are dedicated to executing a dynamically arriving collec-
tion of image processing application requests. Incoming
application requests are queued at a resource manager
for assignment to a machine for processing (e.g., [18]).
Each request has three elements: the application to be
executed, the data that is to be processed by that ap-
plication, and a deadline for completing the processing.
After assignment, an application request is placed in the
input queue of its assigned machine and any required

data are staged to the machine in advance of application
execution. We assume that once a request has been
assigned to a machine for processing it cannot be reas-
signed to another machine. We also make the simplifying
assumption that any data required to complete a request
can be pre-staged before the machine begins processing
the associated request.

The set of applications to be executed is assumed to
be limited to a collection of frequently run applications,
such as may be found in a military or research lab
environment. The actual execution time of each appli-
cation is dependent on the content and size of the data
that is to be processed (where the exact details of this
dependence are not known in advance) and the machine
that will execute the application. However, we assume
that an accurate pmf describing the possible execution
times for each application on each of the heterogeneous
machines exists and is available to the resource manager
to aid in resource allocation (several techniques exist for
generating such a probability distribution, e.g., [6], [19]).

The system is required to complete each request for
processing by its assigned deadline. If the system fails
to complete a request by its deadline, then the system is
penalized a fixed amount for each failed request. Recall
that the system is required to complete all application
requests. For requests that fail to complete by their
deadline, the system is expected to make a “best effort”
to complete the request as close to the deadline as
possible. Assuming that requests will be completed on a
best effort basis implies that request assignments will
not be modified after it is known that there is zero
probability of completing the request by its deadline
because the deadline has already passed. The goal of
resource allocation heuristics in this environment is to
minimize the number of requests that miss their deadline.

III. MATHEMATICAL MODEL

A. Stochastic Application Completion Time

We assume that the execution time of each request
can be characterized by the application that has been
requested. The execution time of each application i,
when executed alone on machine j (one of the M ma-
chines in the HC suite), is modeled as a random variable,
denoted ηij . In addition, each application execution time
(not completion time) is assumed independent, i.e., there
is no inter-application communication. This assumption
of independence is valid for non-multitasking execution
mode, which is commonly considered in the literature
(e.g., [12], [20]), and applied in practice in a variety of
systems, e.g., an iterative universal datagram protocol
server model [21].

We assume that the probability distribution describing
the random variable ηij has been created from mea-
surements of the response times of actual application
executions. A typical method for creating such distribu-
tions relies on a histogram estimator [6] that produces a
discrete probability distribution known as a probability
mass function. Each application is associated with a set
of pmfs, one pmf for each machine in the HC suite,
describing the probability of all possible execution times
for that application. We assume that the collection of
application execution time pmfs have been provided in
advance and that all of the applications that the system
may be asked to execute are known a priori. Finally,
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each request i is assigned an absolute deadline for
completion, denoted δi.

At time-step t(k), we want to predict when machine j
will complete all of the requests that it has been assigned
up to that point. If request i is the last entry in the input
queue of machine j this corresponds to the completion
time for request i. This requires a means of combining
the execution times for all requests assigned to that
machine. Using a deterministic (i.e., non-probabilistic)
model of task execution times, the estimated execution
times for all requests assigned to machine j would be
summed with the machine ready time to produce a
completion time. A similar procedure is followed using a
stochastic model as well. However, calculating stochastic
completion times requires the summation of random
variables as opposed to deterministic estimated values.
A summation of random variables can be found as the
convolution of their corresponding pmfs [22], [23].

Let MQ(t(k)) be the set of all requests that are either
queued for execution or are currently executing on any
of the M machines in the HC suite at time-step t(k). To
determine the completion time for request i on machine
j at time-step t(k), identify the subset of requests in
MQ(t(k)) that were assigned to machine j in advance of
request i that have not yet completed execution, denoted
MQij(t(k)). The execution time pmfs for the requests in

MQij(t(k)) will be convolved with the execution time
distribution for request i on machine j to produce the
stochastic completion time pmf for request i on machine
j.

The execution time pmf for the currently executing
request z on machine j requires some additional process-
ing prior to its convolution with the pmfs of the queued
requests to create a completion time pmf. For example,
if z began execution at time-step t(h) (h < k), some of
the impulse values of the pmf describing the completion
time of z may be in the past. Therefore, to accurately
describe the completion time of request z at time t(k)

requires that these past impulses be removed from the
pmf and the remaining distribution renormalized. After
renormalization, the resulting distribution describes the
completion time of z on machine j as predicted at
time-step t(k). To simplify notation, define an operator
GT (s, d) that accepts a scalar s and a pmf d as input and
returns a renormalized probability distribution where all
impulse values of the returned distribution are greater
than s. The completion time pmf of the currently exe-
cuting request on machine j is determined by applying
the GT operator to its completion time pmf, using the
current time-step t(k) = s. The resulting distribution is
then convolved with the machine j execution time pmfs
in MQij(t(k)) and the pmf of request i to produce the
predicted completion time pmf for request i on machine
j at the current time-step t(k).

B. Calculating Robustness

The robustness of a resource allocation in this en-
vironment is defined by the joint probability that all
applications will complete by their assigned deadline
as predicted at a given time-step t(k). To calculate the
robustness for each machine j, we calculate the joint
probability of completing all applications assigned to
this machine by iteratively applying the product rule

of probability [24] to convert the joint probability of
completing all applications by their deadline into a
combination of simpler known probabilities. Let r1j

denote the currently executing request on machine j at
time-step t(k). The basis for this calculation is the known
probability of completing r1j by its deadline, denoted
p(r1j). Because the start time of the currently executing
request is known and its completion time distribution is
not dependent on any of the remaining requests assigned
to this machine, we can find this probability directly from
its completion time pmf.

The joint probability of completing the first two re-
quests by their deadlines, denoted p(r1j , r2j), can be
expressed as the product of p(r1j) and the probability
that r2j completes by its deadline given that r1j com-
pletes by its deadline, denoted p(r2j |r1j). To calculate
p(r2j |r1j), we select the portion of the completion time
distribution for r1j whose completion times are less than
or equal to the deadline for r1j . This portion of the
probability distribution is then renormalized to form the
pmf corresponding to p(r1j). Convolving the distribution
of p(r1j) with the execution time distribution of r2j gives
the completion time distribution for r2j , given that r1j

completed by its deadline. The final step in determining
p(r2j |r1j) is to compare the completion time distribution
for r2j with its deadline. That is, p(r2j |r1j) is found
as the sum over the completion time distribution for
r2j that corresponds to r2j completing by its deadline.
More generally, to calculate each p(rij |ri−1j), we ex-
tract the portion of the completion time distribution for
ri−1j whose completion times are less than or equal to
the deadline for ri−1j . This portion of the probability
distribution is then renormalized to form the pmf corre-
sponding to p(ri−1j).

Given nj application requests assigned to machine j,
we iteratively apply the product rule of probability as
follows:

p(r1j , r2j) = p(r1j)p(r2j |r1j)

p(r1j , r2j , r3j) = p(r1j)p(r2j |r1j)p(r3j |r1j , r2j)

... =
...

p(r1j , r2j , · · · , rnjj) = p(r1j)p(r2j |r1j) · · ·

p(rnjj |r1j , r2j , · · · , rnj−1j).

At any time-step t(k), each request in the resource
allocation has been previously assigned to the input
queue of some machine j (1 ≤ j ≤ M ). Recall that there
are no explicit inter-application dependencies—the only
dependence that may exist between applications is their
reliance on the same machine for execution. Because of
the independence across machines in the heterogeneous
suite, we can define the stochastic robustness of a
resource allocation at a given time-step t(k), denoted
ρ(k), as the product of the joint probability associated
with each machine, i.e., the probability of all machines
completing their application requests by their deadline
is the product of each machine finishing its application
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requests by their deadline. Formally,

ρ(k) =
∏

∀j

p(r1j , r2j , · · · , rnjj). (1)

IV. HEURISTICS

A. Overview

We investigate a number of heuristics to understand
the complexity required to generate robust resource
management techniques in this environment. Three of
the heuristics described below (MECT, MEET, and
KPB) have been adapted from heuristics taken from
the literature and provide points of comparison with
the MaxRobust heuristic. These comparison heuristics
have generated promising results in other environments
and can be expected to perform reasonably well in this
environment.

B. MaxRobust

The MaxRobust heuristic applies a simple greedy
approach to maximizing the stochastic robustness of the
resource allocation. Upon the arrival of a new request
ri at time-step t(k), MaxRobust assigns request i to the
machine that maximizes ρ(k) at time-step t(k). That is,
MaxRobust calculates the ρ(k) value of request i as it
were assigned to the end of the input queue of machine
j, for each j = 1, . . . ,M , and selects the machine that
maximizes ρ(k). In this way, MaxRobust greedily assigns
applications to maximize the joint probability that all
applications complete by their deadline at time-step t(k).
If all of the machines provide an identical robustness
value, then MaxRobust will break the tie using the KPB
heuristic presented below.

C. Minimum Expected Completion Time (MECT)

The Minimum Expected Completion Time (MECT)
heuristic (based on the Minimum Completion Time
heuristic, e.g., presented in [16], [25], [26]) ignores
the robustness of each allocation. Instead it allocates
requests such that the expected completion time of its
associated application is minimized. Using the expected
execution time for each application, the expected com-
pletion time for any request i on machine j can be found
by summing the expected execution time of each request
in MQij(t(k))). If the input queue of machine j is empty
at the time of evaluation, then the expected execution
time of request i is summed with the current time to
produce a completion time. Using the expected value
of the completion time for request i on each machine
j = 1, . . . ,M , MECT assigns request i to the machine
that provides the earliest expected completion time.

D. Minimum Expected Execution Time (MEET)

The Minimum Expected Execution time (MEET)
heuristic (based on the Minimum Execution Time heuris-
tic, e.g., presented in [16], [25]) also ignores the ro-
bustness of each allocation. Instead, MEET allocates
each request to its minimum expected execution time
machine. That is, for each request i select the machine
j that satisfies

j = argmin1≤k≤M (E[rik]) . (2)

E. K-Percent Best (KPB)

The K-percent best (KPB) heuristic [16] limits the
number of machines that are considered at each request
assignment to the k-percent of the machines with the
shortest expected execution times. Using the expected
value of the execution time of request i on each machine
j = 1, . . . ,M , identify the k-percent of the machines
that provide the shortest expected request execution
times. Next, calculate the expected completion time
for request i on each machine in the set of k-percent
machines found previously and assign i to the machine
that provides the earliest expected completion time. For
our simulations with eight machines, a value of k equal
to 37.5% (i.e., three of the eight machines) provided the
best result.

F. Shortest Queue (SQ)

In SQ, each request i is assigned to the machine j that
has the smallest number of pending requests in its input
queue. Ties are broken arbitrarily.

V. SIMULATION SETUP

Our simulation environment consisted of eight ma-
chines that exhibited inconsistent heterogeneous perfor-
mance [25]; e.g., machine A may be better than machine
B for application 1 but not for application 2. To model
the sample mean application execution times on each
machine, we used the base execution results for the 12
SPECint 2006 benchmark applications [27].1 The mean
execution times of the selected benchmarks were used
to define the mean of a gamma distribution. Using these
distributions, we generated 500 random sample execu-
tion times for each application on each machine [28]
where the scale parameter of each gamma distribution
was selected uniformly at random from the range [1,20].
After generating the sample execution times, we applied
a histogram [6] to the result to produce a noisy approx-
imation of the original probability distributions—one
for each application on each machine. Each benchmark
served as a model for an application to be executed
by the system creating an eight machine by twelve
application matrix of execution time pmfs.

In each simulation trial, an absolute deadline for each
request was established as the sum of the arrival time
of the request and the average expected execution time
across all of the machines for the application associated
with the request.

To evaluate the effectiveness of our heuristics we
conducted 100 different simulation trials. The frequency
of request arrivals during each simulation is such that
none of the heuristics tried were able to complete all
of the requests by their assigned deadline for each trial.
Each simulation trial included 2000 requests that arrived
over a period of 20,000 time-steps. Request arrivals
were assumed to follow a Poisson process, where the
application associated with the request was selected
at random from the application types available with a
uniform probability.

1The eight machines chosen to compose the HC suite in our
simulation trials were: Dell Precision 380 3Ghz Pentium Extreme
Edition, Apple iMac 2Ghz Intel Core Duo, Apple XServe 2Ghz Intel
Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P
AMD Athlon 64 FX-60, IBM System P 570 4.7Ghz, SunFire 3800,
and IBM BladeCenter HS21XM.
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Fig. 1. A comparison of our heuristic results over 100 simulation
trials. The results achieved for each heuristic are plotted along with
their 95% confidence intervals.

VI. RESULTS

The heuristics were evaluated based on the percentage
of applications that completed by their assigned dead-
lines. In evaluating our results, we observed that the
number of on-time request completions that occur at
the beginning (i.e., within the first 50 request arrivals)
of each simulation trial tended to be high for all of
the heuristics tried. At the beginning of each simulation
trial, all of the machines in the HC suite are idle and
more likely to complete requests on-time. That is, during
this period the system is effectively under-subscribed. To
limit the influence of simulation start up on our results,
we chose to exclude the results for the first 50 requests
in each simulation trial.

The results for all of the heuristics are plotted in
Figure 1. In our simulations, the MaxRobust heuristic
significantly outperformed all of the other heuristics
tried, completing on average 84.1% of the applications
by their deadline with a 95% confidence interval of
± 1.5%. The SQ heuristic completed 34.5% of the
applications by their deadline with a 95% confidence
interval of ± 2.8%. The KPB heuristic completed on
average 12.3% of the applications on time with a 95%
confidence interval of ± 0.6%. Both the MEET and
MECT heuristics performed poorly, each completing
on average 7% of the applications by their deadline
both with a 95% confidence interval of ± 0.1%. The
overall performance difference between the MaxRobust
heuristic and the other approaches tried is significant
and demonstrates the value of the stochastic robustness
model for making allocation decisions.

The MECT and MEET results appear very similar
with both only completing on average 7% of the requests
on time. The poor performance of these heuristics is
caused by poor request assignments early in the simula-
tion trials that cause the on-time completion rate to drop
significantly for the remainder of the simulation. Given
the machines chosen for the simulations, one machine
has a consistently higher expected execution time for
all tasks in the simulation. Consequently, the MEET
heuristic under-utilizes poor performing machines even
if they could be used to complete specific tasks by their
deadline.

In contrast, the MECT heuristic uses all of the ma-
chines in the HC suite. But it still ignores the possi-
ble variability in task execution times. Recall that the
objective of each heuristic is to maximize the number

of requests that complete by their deadline. The MECT
heuristic allocates requests based on the expected ap-
plication execution times. If there is a large variance
between the actual execution time of an application and
its expected execution time, then this may impact not
only the results of the first request but also the results
of the remaining requests in the input queue of the
same machine. That is, because the completion time
of each request is dependent on the completion times
of requests previously assigned to the same machine,
any unexpected increase in completion time can cause a
cascade of failures. The problem is further compounded
by the arrival rate of requests for processing, i.e., there is
no large break in the arrival rate that would allow MECT
to ”catch up.”

The KPB heuristic is a combination of MECT and
MEET and significantly outperforms both. That is, KPB
avoids some of the poor assignment problems of MECT
by limiting the set of machines considered for each
request assignment to only the k-percent of the machines
(3 in these simulations) with the shortest expected exe-
cution times. Similarly, by accounting for the expected
completion time of each request KPB is able to avoid
the delays incurred by MEET.

Figure 2 plots the empirical cumulative distribution
of the results for all of the heuristics. The x-axis of
the figure defines the number of requests that miss their
deadline. For each x, the y-axis plots the fraction of trials
where x or fewer applications missed their deadline. The
best result achievable in the figure corresponds to the line
y = 100% (i.e., for all simulation trials, no requests miss
their deadline). Comparing the results of the heuristics
to this known limit on performance, we see that the
MaxRobust heuristic consistently outperforms all of the
other heuristics tried.

Surprisingly, the SQ heuristic performed significantly
better than the KPB, MEET, and MECT heuristics. For
example, the results for the SQ heuristic in Figure 2 are
far better than the KPB, MECT, and MEET heuristics.
That is, in 80% of the simulation trials SQ was able to
complete 500 (out of 2000) requests by their deadline
(i.e., no more than 1500 requests miss their deadline)
whereas there were 0% of the trials where KPB, MECT,
or MEET could complete that number of requests on-
time. The KPB, MECT, and MEET heuristics suffer
from the same effect, that is, if some request A takes
longer than expected, then a potentially large number of
requests (waiting in that machine’s input queue behind
A) may miss their deadline. SQ addresses this effect by
trying to minimize the maximum number of requests in
the input queue of any machine. Selecting the machine
with the shortest queue length lessens the impact of one
or more tasks having a longer than expected completion
time. That is, picking the shortest queue will in general
lead to a balanced (equal) number of requests across all
machines. Furthermore, by minimizing the max queue
length, the accumulation of small increases in comple-
tion times for requests assigned to the same machine can
be avoided.

To demonstrate the practicality of stochastic resource
allocation in a dynamic environment, we timed several
completion time calculations on an inexpensive Graph-
ics Processing Unit (GPU). The most time-consuming
calculation in computing a stochastic completion time is
the convolution of the application execution time pmfs.
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Fig. 2. A comparison of the results of the five heuristics where each curve represents the cumulative distribution for the 100 simulation trials
corresponding to the number of requests that miss their deadline (plotted on the x-axis) relative to the percentage of trials where this number
of requests or fewer miss their deadline (plotted on the y-axis).

The convolution calculation relies on the use of a discrete
fast Fourier transform (DFFT). To accelerate this process
we utilized the CUFFT package from NVIDIA [29] to
compute the forward and inverse DFFTs on the GPU.
To further minimize the amount of data transfer to and
from the GPU we also computed the convolution on the
GPU as well.

Using data from our simulations, the time to compute
each completion time calculation on the GPU2 was on
average 0.0029 seconds. To determine this average we
executed 10,000 convolutions where each distribution
included 4096 entries. Thus, relative to the average
execution time of each application in our simulated
environment (which was on the order of tens of seconds)
the time required to complete eight of these convolutions
(one for each machine in the HC suite) to produce each
assignment was trivial.

VII. RELATED WORK

According to the literature, the problem of workload
distribution considered in our research falls into the
category of dynamic resource allocation. The general
problem of dynamically allocating a class of independent
tasks to heterogeneous computing systems was studied
in [16]. The primary objective in [16] was to mini-
mize system makespan, i.e., the total time required to
complete all tasks. This objective is very different from
the primary objective in our current work: complete
each request before its deadline. For comparison, we
employed several heuristics from [16] in this environ-
ment and demonstrated the superior performance of the
MaxRobust heuristic at achieving our resource allocation
objective.

The robustness requirement in this work differs sub-
stantially from our earlier work on robustness in a
dynamic environment in [30]. There, the robustness re-
quirement was expressed in terms of the overall resource
allocation, i.e., expressed in terms of the entire alloca-
tion. In this work, each application has an individual
deadline, thus, the robustness metric must be expressed
in terms of individual applications. Further, the research

2The GPU used was the Nvidia NVS 135M.

presented in [30] was not based on a stochastic model
of application execution times.

In our previous work [3], similar to the environment
considered in the current paper, each dynamically arriv-
ing task is assigned its own deadline relative to its arrival
time and the execution time of each task is modeled as a
random variable. However, our previous work focused on
predicting the performance of heuristics in a stochastic
dynamic environment.

In England et al. [31], the authors present a new
robustness metric based on the Kolmogorov-Smirnov
(K-S) statistic. Computing the K-S statistic for a resource
allocation requires the cumulative distribution function
(cdf) over the chosen performance metric given an
unperturbed system and a second cdf over the chosen
performance metric given that the system has been
perturbed. In this case, however, the authors use the
magnitude of the K-S statistic to measure the deviation of
a system from its expected behavior. To characterize the
overall robustness of a system, the authors measure the
perturbed performance of the system assuming a number
of different levels of perturbation. This technique for
calculating robustness is well suited to the evaluation
of a policy in advance of its deployment. However, the
K-S statistic is not well suited to environments where
robustness is to be calculated and used during resource
allocation.

In Shi et al. [32], the authors present a resource allo-
cation problem where the workload to be executed is de-
scribed as an application consisting of a directed acyclic
graph of tasks. The performance metric of interest in this
system is makespan, i.e., the time required to complete
all tasks on the critical path of the application. In their
system, task execution times are estimated and actual
times may deviate considerably from their estimated
values. The authors propose two robustness measures
based on system slack for quantifying the robustness of a
schedule: (1) relative schedule tardiness and (2) schedule
miss rate. Relative schedule tardiness is calculated as
the difference between the expected makespan for the
schedule and the actual makespan. The schedule miss
rate is based the count of the number of schedule execu-
tions whose actual makespan is greater than the expected
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makespan. Neither approach to calculating robustness in
[32] is based on stochastic information.

VIII. CONCLUSIONS

In this work, we used a model of stochastic robustness
that facilitates its calculation and use during resource
allocation. We applied this model of stochastic robust-
ness to the design of a novel resource allocation heuristic
capable of assigning requests to machines in a manner
that minimizes the number of requests that miss their
deadline. The MaxRobust heuristic showed significant
promise for achieving this desired result in a dynamic
environment.

Our results demonstrate the advantages of a
robustness-based resource allocation approach in a
stochastic environment. This research also demonstrates
the viability of creating new resource allocation heuris-
tics based on stochastic robustness in a dynamic en-
vironment. Extensions to this work may consider the
impacts of misleading pmfs on heuristics that attempt
to leverage the stochastic robustness model to make
resource allocation decisions.
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