Future Generation Computer Systems 33 (2014) 1-10

Contents lists available at ScienceDirect o - .
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs - —

Maximizing stochastic robustness of static resource allocations in a

periodic sensor driven cluster

e

® CrossMark

Jay Smith®P* Anthony A. Maciejewski®, Howard Jay Siegel >¢

2 Lagrange Systems, Boulder, CO 80302, USA

b Colorado State University, Department of Electrical and Computer Engineering, Fort Collins, CO 80523-1373, USA
¢ Colorado State University, Department of Computer Science, Fort Collins, CO 805231373, USA

HIGHLIGHTS

Resource allocation heuristics that maximize robustness.

Novel methodology for creating robust resource allocations given a tight deadline.

Local search operator for a Genetic Algorithm including search space analysis.
Local search based path relinking crossover operator for a Genetic Algorithm.

ARTICLE INFO ABSTRACT

Article history:

Received 15 December 2012
Received in revised form

27 September 2013

Accepted 4 October 2013
Available online 24 October 2013

Keywords:

Robustness
Heterogeneous computing
Resource management
Static resource allocation
Distributed computing

This research investigates the problem of robust static resource allocation for distributed computing
systems operating under imposed Quality of Service (QoS) constraints. Often, such systems are expected to
function in an environment where uncertainty in system parameters is common. In such an environment,
the amount of processing required to complete a task may fluctuate substantially. Determining a resource
allocation that accounts for this uncertainty—in a way that can provide a probability that a given level of
QoS is achieved—is an important area of research. We have designed novel techniques for maximizing the
probability that a given level of QoS is achieved. These techniques feature a unique application of both
path relinking and local search within a Genetic Algorithm. In addition, we define a new methodology for
finding resource allocations that are guaranteed to have a non-zero probability of addressing the timing
constraints of the system. We demonstrate the use of this methodology within two unique steady-state
genetic algorithms designed to maximize the robustness of resource allocations. The performance results
for our techniques are presented for a simulated environment that models a heterogeneous cluster-based
radar data processing center.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In parallel and distributed computing, multiple compute nodes
are collectively utilized to simultaneously process a set of appli-
cations to improve the performance over that of a single proces-
sor [1,2]. Often, such computing systems are constructed from a
heterogeneous mix of machines that may differ in their capabili-
ties, e.g., available memory, number of floating point units, clock
speed, and operating system. This paper investigates robust re-
source allocation for a large class of heterogeneous computing (HC)
systems that operate on periodically updated sensor data sets. Sen-
sors (e.g., radar systems, sonar) in this environment produce new

* Corresponding author at: Colorado State University, Department of Electrical
and Computer Engineering, Fort Collins, CO 80523-1373, USA. Tel.: +17208395378.
E-mail addresses: jay@lagrangesystems.com (J. Smith), aam@colostate.edu

(A.A. Maciejewski), hj@colostate.edu (H.J. Siegel).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.10.001

data sets at a fixed period A (see Fig. 1). Often, the period at which
the sensor produces new data sets is fixed by the sensor and can-
not be extended to account for long-running applications. Because
these sensors typically monitor the physical world, the characteris-
tics of the data sets they provide may vary in a manner that impacts
the execution times of the applications that must process them.
Suppose that each input data set must be processed by a collection
of N independent applications that can be executed concurrently
on the available set of M heterogeneous compute nodes. The goal
of resource allocation heuristics in this environment is to allocate
the N tasks to the M compute nodes such that all of the applications
finish each data set in less than A time units, i.e., the makespan of
a resource allocation must be less than or equal to A.

In this environment, the allocation of compute nodes to appli-
cations can be considered static, i.e., all of the applications that are
to be executed are known in advance and are immediately avail-
able for execution upon the arrival of a new data set. Furthermore,

http://dx.doi.org/10.1016/j.future.2013.10.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.10.001&domain=pdf
mailto:jay@lagrangesystems.com
mailto:aam@colostate.edu
mailto:hj@colostate.edu
http://dx.doi.org/10.1016/j.future.2013.10.001

2 J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10

SEensors | A time units ‘ compute nodes
| data set | data set
| ‘ | | L{“ . aml
| . ‘ | . | machine 1
\ |

) I | - | :

. | . | . .
- g
[I R
|___‘ |___| machine M

Fig. 1. Major functional units and data flow for a class of systems that must periodically process data sets from a collection of sensors, where a; corresponds to the ith

application assigned to machine j.

the resource allocation remains fixed over a sequence of data sets.
We assume that historical application execution time data for each
application on each compute node in the HC system is available.

Because this is an HC system, the execution times for each of the
N independent applications differ across the M compute nodes. Re-
source allocation in such computing environments has been shown
in general to be an NP-hard problem (e.g., [3,4]). Thus, designing
techniques for resource management in such environments is an
active area of research (e.g., [5,6,1,7-10]).

We consider an environment where the required time period
A is fixed by the sensor platform. Because a new data set arrives
every A time units, the completion time of all applications must
be less than or equal to A. Thus, ensuring that the system is ready
to begin processing the next data set upon arrival without delay.
However, unpredictable differences in the characteristics of the in-
put data sets may result in a significant change in the execution
times of the applications that must process the data. These differ-
ences may prevent some applications from completing because it
would cause the makespan of the resource allocation to exceed A.
Robust design for such systems involves determining a resource al-
location that can account for uncertainty in application execution
times in a way that maximizes the probability that all applications
will complete within A time units. This probability is used to quan-
tify robustness in this environment.

We first demonstrate several techniques for maximizing the ro-
bustness of resource allocations using both a greedy heuristic and
more complex approaches, such as Genetic Algorithms. We show
that the complex heuristics perform well given a “loose” A com-
pletion time constraint. However, given a tight A constraint all of
the initial approaches routinely fail to produce resource allocations
with a non-zero probability of completing by A. Our results show
that by first minimizing the expected makespan of our resource
allocations, we can easily find resource allocations with very small
but provably non-zero robustness values. Although these resource
allocations are poor solutions to our original problem of finding
robust resource allocations, they can be used as seeds for our Ge-
netic Algorithm techniques for maximizing robustness. The results
of our simulation study demonstrate the utility of this approach
for maximizing the robustness of resource allocations given both
loose and tight A completion time constraints.

The major contributions of this paper include (1) a novel
methodology for generating robust resource allocations given tight
completion time constraints, (2) the design of resource allocation
heuristics that can leverage this methodology to maximize the
robustness of resource allocations subject to a constraint on the
maximum allowable completion time A, (3) design of a local search
technique for this problem domain and the associated search space
analysis, and (4) the design of a path relinking crossover operator
that utilizes local search within a Genetic Algorithm.

The remainder of this work is organized in the following
manner. Section 2 describes the model of stochastic compute node
completion times used in this work. A brief introduction to the
stochastic robustness framework is presented in Section 3 along
with an introduction to using the stochastic robustness metric
within a heuristic. Four search based algorithms designed for this
environment and one simple greedy heuristic are described in
Section 4. The parameters of the simulation study used to evaluate
a direct maximization of robustness are discussed in Section 5.
Section 6 defines our methodology for generating resource
allocations that are guaranteed to have non-zero robustness even
for tight A values. This section presents the details of a steady-
state genetic algorithm that successfully applies this approach for
defining an initial population that can be used in each of our
complex heuristics. The results of this combined approach are
provided in Section 6.4. A sampling of the relevant related work
is presented in Section 7. Section 8 concludes the paper.

2. System model environment

In this environment, we are concerned with allocating a set
of N independent applications to a collection of M dedicated
heterogeneous compute nodes. Each of the N applications must
process data that is produced by the system’s sensors. In a static
resource allocation, all of the applications to be executed are
known in advance of performing a resource allocation. In this
environment, although the data sets to be processed vary every
A time units, the applications executed are the same and their
assignment to compute nodes remains fixed.

Application execution times are known to be data dependent.
The data sets produced by the system sensors vary with changes
in the real world, causing application execution times to vary in
unpredictable ways. For this reason, we model the execution time
of each applicationi (1 < i < N) on each compute node j (1 <
j < M) as arandom variable [11], denoted by ;. We assume that,
based on historical data or experiments, probability mass functions
(pmfs) describing the possible execution times for each application
on each compute node exist and are available for each ;. (See [12]
for some techniques for estimating these pmfs.)

Using the execution time pmfs, we can produce a completion
time distribution for each compute node for a given resource al-
location. The finishing time of each compute node is calculated as
the sum of the execution time random variables for each applica-
tion assigned to that compute node [13]. Let n; be the number of
applications assigned to compute node j. The pmf for the finishing
time of compute node j, referred to as a local performance charac-
teristic v, can be expressed as follows:

1
vi= -
i=1

(1)

J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10 3

Thus, the system makespan, denoted by ¥, can be expressed in
terms of the local performance characteristics as follows:

Y =max{yy, ..., ¥u}. (2)

If the execution times nj; for the applications assigned to compute
node j are mutually independent, then the summation of Eq. (1)
can be computed using an (n; — 1)-fold convolution of the corre-
sponding pmfs [14,13].

3. Problem statement

Resource allocation decisions are often based on estimated
values of task and system parameters, whose actual values are
uncertain and may differ from available estimates. A resource
allocation can be considered “robust” if it can mitigate the impact
of uncertainties in system parameters on a given performance
objective [15]. Any claim of robustness for a given system must
answer these three questions [16]: (a) What behavior makes the
system robust? (b) What are the uncertainties that the system
is robust against? (c) Quantitatively, exactly how robust is the
system? A robustness measure for this environment was first
derived in [13] using these three questions and is summarized
below.

For this system, the performance feature of interest is
makespan, ¥. A resource allocation can be considered robust if the
actual finishing time of each compute node is less than or equal to
the periodicity of the data set arrivals A, i.e.,, < A. We refer to
this as the robustness requirement of the system.

Uncertainty in the system arises because the exact execution
time for each application is not known in advance of its execution.
That is, each of the execution time random variables 7; is a source
of uncertainty in a resource allocation. Because of its functional
dependence on the execution time random variables, the system
makespan is itself a random variable. That is, the uncertainty
in application execution times can have a direct impact on the
performance metric of the system.

To determine exactly how robust the system is under a specific
resource allocation, we conduct an analysis of the impact of
uncertainty in system parameters on our chosen performance
metric. For a given resource allocation, the stochastic robustness
measure provides the probability that the generated system
performance will satisfy our robustness requirement. Clearly, unity
is the most desirable value of the stochastic robustness measure,
i.e., thereis a 100% chance that the system will meet the established
robustness requirement. For each compute node j, its robustness
value, P[y/; < A], is found as the sum over the impulses in the pmf
describing v/; whose impulse values are less than or equal to A.

The stochastic robustness measure, denoted by 9, is defined
as the probability that the performance feature of the system is
less than or equal to A, i.e., 8 = P[{y < A]. Because there are no
inter-task data transfers among the applications to be assigned,
the random variables for the local performance characteristics
(Y1, ¥, ..., ¥y) are mutually independent. As such, the stochas-
tic robustness metric for a resource allocation can be found as the
product of the probability that each local performance character-
istic is less than or equal to A. Mathematically, this is given as:

=[] (P[wj < A]). (3)
Vi<j<M

Intuitively, the stochastic robustness of a resource allocation
defines the probability that all of the applications will complete
within the allotted time period A. In this research, we are provided
with a constraint A on the maximum time period required to
process all applications and attempt to derive a resource allocation
that maximizes robustness, i.e., the probability that all applications
will complete by this deadline.

Algorithm 1 Pseudocode for the Two-Phase Greedy heuristic.

while not all applications are mapped do
for each unmapped application a; do
find the compute node m; such that,

]

k < argmin}_;_, {Z E [n;] }
1

resolve ties arbitrarily

end for
from all (a;, my) pairs found above select pair (ay, m,) with the
smallest completion time
resolve ties arbitrarily
map application a, to compute node m,
end while

*Argmin is an operation that returns the value of the argument for which the given
expression attains its minimum value.

4. Heuristics
4.1. Two-phase greedy

The Two-Phase Greedy heuristic is based on the principles of the
Min-Min algorithm (first presented in [4], and shown to perform
well in many environments, e.g., [1,17]). The heuristic requires N
iterations to complete, resolving a single application to compute
node assignment during each iteration.

In the first phase of each iteration, the heuristic determines
the application to compute node assignment that minimizes the
individual expected completion time for each of the applications
left unmapped. In the second phase, the heuristic selects the
application to compute node assignment pair from the first phase
that has the smallest expected completion time. Pseudo-code for
the Two-Phase Greedy heuristic is provided in Fig. 1.

In this heuristic, we chose to minimize the expected com-
pletion time of applications as opposed to maximizing robust-
ness because early in building an allocation, many of the pos-
sible application/compute-node assignments will have identical
robustness values, i.e., unity. This happens because many of the
applications have yet to be assigned, therefore, the subsets that
have already been assigned are all guaranteed to finish before A
(i.e., & = 1). Thus, an application of the Min-Min algorithm that
directly maximizes robustness in this environment is ineffective.

4.2. Genetic algorithm

Our genetic algorithm (GA) was motivated by the Genitor
evolutionary heuristic first introduced in [18]. A complete resource
allocation is modeled as a sequence of numbers, referred to as a
chromosome, where the ith entry in the sequence corresponds to
the compute node assignment for the ith application, denoted by
a;. The ordering of applications in a chromosome is not significant
for this environment and can be considered arbitrary. The fitness
of each chromosome is determined according to the robustness of
the resource allocation it represents. That is, a higher robustness
value 6 indicates a more fit chromosome.

In our GA implementation, we maintain a sorted list of the 100
most fit chromosomes encountered, referred to as the population,
where the chromosomes are listed in decreasing value of their
robustness. The appropriate size of the population was selected
through experimentation.

The initial members of the population were generated by
applying the simple greedy heuristic from [13] and applying a
local search operator to the result. The simple greedy heuristic
randomly selects an application and assigns it to the compute
node that provides the smallest application completion time. After
a chromosome is produced by this simple greedy heuristic, we

4 J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10

apply the local search operator defined in Section 4.3 to produce
a new chromosome that is a local maximum, i.e., the robustness
of the chromosome cannot be further improved upon using our
local search procedure. Before the generated chromosome can
be inserted into the population, a check is performed to ensure
that the new chromosome is unique. In this way, we ensure that
no member of the initial population is over-represented. This
chromosome generation process is repeated, each time with a
new random application selection order, until the population size
reaches its limit, e.g., 100 chromosomes.

Our GA operates in a steady state manner, i.e., for each iteration
of the GA only a single pair of chromosomes is selected from the
population for crossover [18]. Chromosome selection is performed
using a linear bias function [18], based on the fitness of each
chromosome. If the new chromosome generated is not already in
the population, it is inserted in sorted order according to its fitness
value. For each chromosome inserted, the least fit chromosome in
the population is removed, so that the size of the population is held
fixed.

The crossover operator was implemented using the two-point
reduced surrogate procedure [18]. Crossover points are randomly
selected such that at least one element of the parent chromosomes
differs between the selected crossover points to guarantee
offspring that are not clones of their parents. Thus, each execution
of the crossover operator will produce two unique offspring.

The final step within each iteration of our GA implementation
applies a mutation operator. For each iteration of the GA, the
mutation operator selects a small percentage, referred to as the
mutation selection rate, of the overall population and randomly
alters the chromosome to produce a new chromosome. For the
simulated environment, based on experimentation, we chose a
mutation selection rate of 0.1. During mutation, each application to
compute node assignment within the chromosome to be mutated
is individually modified with a probability referred to as the
mutation rate. For the simulated environment, the best results
were achieved using a mutation rate of 0.02, determined through
experimentation. Once an application/compute-node assignment
has been selected for mutation, the mutation operator randomly
selects a different compute node assignment for the chosen
application. After mutation, the new chromosome, if it is unique,
is inserted into the population, and the worst chromosome is
dropped.

We limited the total number of chromosome evaluation func-
tion calls in our GA implementation to 4,000,000. For the simula-
tion trials tested, this number of chromosome evaluation function
calls enabled the GA to find a resource allocation that provided a
near unity robustness value. The GA procedure is summarized in
Fig. 2.

4.3. Genetic algorithm with local search (GALS)

The Genetic Algorithm with local search (GALS) heuristic is
identical to our earlier GA procedure with the exception that a
local search procedure is applied to every chromosome before
it is inserted into the population. The local search procedure is
conceptually analogous to the steepest descent technique [19]. In
this way, the GALS heuristic attempts to confine the population of
the GA to those solutions that are local maxima.

The local search implemented in GALS is similar to the fine
refinement presented as part of the GIM heuristic in [20]. The
local search relies on a simple four-step procedure to maximize 0
relative to a fixed A value. First, for a given resource allocation,
the compute node with the lowest individual probability to
meet A is identified. From the applications assigned to this
compute node, local search identifies the application that, if
moved to a different compute node, would increase 6 the most.
This requires re-evaluating 6 every time an application-compute
node re-assignment is considered. However, because the machine

best
-‘\ !
—X
\ N
end
L‘IJ start

N

Fig. 2. A conceptual depiction of the path relinking procedure. Each level set
or contour line in this depiction corresponds to a single robustness value. The
search begins at chromosome y, labeled start in the figure, and generates a path
to chromosome x, labeled end, using the path relinking procedure. Local search
is applied to each current chromosome produced along the path from y to x. In
this example, the path connecting y and x passes through an area that leads to the
improved solution o.

Algorithm 2 Pseudo-code for the GA heuristic.
generate initial population using simple greedy heuristic
rank population in descending order based on 6 values
while eval count < 4, 000, 000 do
select two chromosomes from the population for crossover
select crossover points
exchange compute node assignments between crossover
points
if not already present in the population then
insert resulting offspring into population
if population size > limit then
remove worst chromosome
end if
end if
for each chromosome in the population do
generate a random number x in the range [0,1]
if x < mutation selection rate then
for each application in the selected chromosome do
generate a random number y in the range [0,1]
if y < mutation rate then
arbitrarily change compute node assignment of the
selected application
end if
end for
end if
end for
if not already present in the population then
insert resulting offspring into population
if population size > limit then
remove worst chromosome
end if
end if
end while
output the best solution encountered

J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10 5

completion time distributions can be calculated independently,
producing the new 6 value only requires that we produce
new completion time distributions for the two machines that
participated in the reassignment, i.e., the complexity of calculating
the new @ is greatly reduced. Once an application-compute node
pair has been identified, the chosen application is moved to its
chosen compute node.

If no application can be moved to a new compute node to
obtain a strict improvement in 9, then we consider swapping two
applications. In a swap, one of the two applications considered for
swapping must currently be assigned to the compute node under
consideration, while the second application is selected from the set
of applications assigned to a different compute node. The pair of
applications selected corresponds to the two that would improve 6
the most. As in the reassignment case, the complexity of calculating
the new 6 value is limited to recomputing the completion time
distributions for the two machines involved.

The procedure repeats from the first step until there are no
application moves or swaps from the lowest probability compute
node that would strictly improve 6. The procedure is then repeated
for each compute node in increasing order of the probability that
the local performance characteristic is less than or equal to A until
no application can be moved to improve 6. For this procedure, it
is assumed that & < 1; otherwise, no improvements can be made
through local search.

4.4. Genetic algorithm with path relinking (GAPR)

Path relinking can be used as a means of combining two
“parents” to form a new type of crossover operator [21]. The path
relinking implementation of crossover begins with a pair of
chromosomes, and draws a path from one parent to the other by
exchanging one application/compute-node assignment at a time.
Using path relinking, we form a new GA heuristic based on the
GALS heuristic presented in the previous subsection by replacing
the two-point reduced surrogate crossover operator with path
relinking.

Our implementation of path relinking begins with a pair of
chromosomes to be used as parents in the operation and selected as
in the GA procedure. One is labeled the start chromosome and the
other is labeled the end chromosome. Next, we initialize the “best
chromosome encountered” to the parent chromosome with the
highest robustness value and initialize the “current chromosome”
to the start chromosome.

Starting with i initialized to 1, in the current chromosome, we
change the compute node assignment of g; to the assignment of a;
in the end chromosome. We copy the current chromosome into a
temporary location and apply the local search operator from GALS
to this temporary chromosome. Finally, if the robustness of the
chromosome produced by the local search is greater than that of
the best chromosome encountered, then we replace the best with
this result. We then increment i and the procedure continues in
this manner until the current chromosome is identical to the end
chromosome. When this occurs, the procedure outputs the best
chromosome encountered during path relinking as the offspring
of the operation and exits. Note that if the machine assignment for
a; is the same in both the start and end chromosomes, we skip the
local search and increment i. To generate a second offspring from
this operator, we proceed as before, but we exchange the start and
end chromosomes to follow a second path.

An example of the path relinking procedure is depicted in
Fig. 2. In the figure, two chromosomes y and x are connected by
transforming the start chromosome y into the end chromosome x.
For each intermediate point along the path from y to x, we apply
the local search procedure to find the resource allocation whose
robustness defines a local optimum. Because all of the members

Algorithm 3 Pseudo-code of one direction of the path-relinking
crossover procedure.

start < first chromosome selected for crossover
end < second chromosome selected for crossover
if 6 (start) > 6(end) then
best < start
else
best < end
end if
current < start
fori=1toN do
if g; in start # a; in end then
a; in current <— a; in end
result < apply local search to current
if O (result) > 6 (best) then
best < result
end if
end if
end for
offspring <— best
output offspring

of the GAPR population are local optima, the chromosomes y and
x are themselves local optima. By transforming solution y into
solution x one compute node assignment at a time, path relinking
may encounter an intermediate chromosome which leads to the
local optimum chromosome o. In our implementation, we produce
only a single offspring (the “best” chromosome encountered) from
each direction of the path relinking operator. Pseudo-code for our
implementation of path relinking is provided in Fig. 3.

4.5. Simulated annealing

The Simulated Annealing (SA) algorithm - also known in the lit-
erature as Monte Carlo annealing or probabilistic hill-climbing [17]
- is based on an analogy taken from thermodynamics. In SA, a sin-
gle solution, is generated by the Two-Phase Greedy heuristic, struc-
tured as a chromosome, and then iteratively modified and refined.

To deviate from the current solution in an attempt to find a
better one, SA repeatedly applies the mutation operation of our
steady-state GA, applying the local search operator to the mutated
result prior to its evaluation. The mutation rate was determined
through experimentation with our simulation trials and set to 10%.
Once a new solution, denoted by S, is produced, a decision
regarding the replacement of the previous solution, denoted by
Soid, With Sy, has to be made. If the fitness of the new solution,
denoted by 0 (Spew), found after evaluation, is higher than the old
solution, the new solution replaces the old one. Otherwise, SA will
probabilistically allow poorer solutions to be accepted during the
search process, which makes this algorithm different from other
strict hill-climbing algorithms [17]. The probability of replacement
is based on a system temperature, denoted by T, that decreases
with each iteration. As the system temperature “cools down”,
it becomes more difficult for poorer solutions to be accepted.
Specifically, the SA algorithm selects a random number from the
range [0, 1) according to a uniform distribution. If

1
(ﬂ(snem—wsold)) ’ (4)
T

random[0, 1) >

14 exp

then the new poorer resource allocation is accepted; otherwise, the
old solution is kept. As can easily be seen in Eq. (4), the probability
for a new solution of similar quality to be accepted is close to 50%.
In contrast, the probability that a much poorer solution is rejected
is rather high, especially when the system temperature becomes
relatively small.

6 J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10

100

0 r

Two-Phase Greedy SA GAPR GA

robustness
(] w B w @ ~ [+:] ¥s3
o o o (=] (=] o o o

=

GALS

Fig. 3. A comparison of the average robustness values over 50 simulation trials
for the Two-Phase Greedy, Simulated Annealing (SA), Genetic Algorithm with Path
Relinking (GAPR), Genetic Algorithm (GA), and Genetic Algorithm with Local Search
(GALS) heuristics.

After each mutation (described in Section 4.3) and subsequent
local search, the system temperature T is reduced to 99% of its
current value. This percentage, defined as the cooling rate, was
determined experimentally by varying the cooling rate in the range
[0.9, 1). The fitness of each chromosome, 6, is inherently bound to
the interval [0, 1]. Consequently, only small differences between
0 (Snew) and 6 (S,1q) are possible, causing Eq. (4) to remain very near
0.5 for large values of T. Based on our experimentation, we set the
initial system temperature in Eq. (4) to 0.1.

For the simulation trials tested, our implementation of SA was
terminated after 4,000,000 chromosome evaluation function calls
to enable a fair comparison with the results of all of our steady-
state GA implementations. The SA procedure is summarized in
Algorithm 4.

Algorithm 4 Pseudo-code for the Simulated Annealing heuristic.
Soid < initial Two-phase greedy solution
T < 0.1
while eval count < 4, 000, 000 do

Spew <—mutate Syj4
apply local search to Sy,
if 6 (Spew) > 0(So) then
Sold <— Snew
else if Eq.(4) holds then
Sold <~ Snew
end if
T <099 x T
end while
return Sy

5. Simulation study for loose A

5.1. Setup

In these simulations, the periodicity A of data set arrivals was
assumed fixed at 540 time units. The value for the constraint A
was selected to present a challenging resource allocation problem
for our chosen heuristics (i.e., the resulting 6 was neither 1 nor
0) based on the number of applications, the number of compute
nodes, and the execution time pmfs used for ;. The goal of the
heuristics is to maximize robustness.

To evaluate the performance of the heuristics described in Sec-
tion 4, the following approach was used to simulate a cluster-
based system for processing radar data sets. The execution time
distributions for 28 different types of possible radar ray processing

algorithms on M = 8 heterogeneous compute nodes were gen-
erated by combining experimental data with benchmark results.
The experimental data, represented by two execution time sample
pmfs, were obtained from experiments conducted on the Colorado
MAT1 radar [22]. These sample pmfs contain application execution
times for 500 different radar data sets of varying complexity by
the Pulse-Pair & Attenuation Correction algorithm [23] and by the
Random Phase & Attenuation Correction algorithm [23]. Both ap-
plications were executed in non-multitasking mode on the Sun Mi-
crosystems Sun Fire V20z workstation. To simulate the execution
of these applications on a heterogeneous computing system, each
sample pmf was scaled by a performance factor corresponding to
the performance ratio of a Sun Microsystems Sun Fire V20z to each
of eight selected compute nodes' based on the results of the four-
teen floating point benchmarks from the CFP2000 suite [24]. Com-
bining the results available from the CFP2000 benchmarks with the
sample pmfs produced by the two available applications provided
a means of generating the 28 x 8 matrix of application execution
times, where the (k, j) element in the matrix corresponds to the
application execution time pmf of a possible ray processing algo-
rithm of type k on compute node j.

Each simulation trial consisted of a set of 128 applications (N =
128). To evaluate the performance results of each heuristic, 50
simulation trials were conducted. For each trial, the type of each
application was determined by randomly sampling integers in the
range [1, 28].

5.2. Results

The results of the loose A simulation trials are presented in
Fig. 3. The 50 simulation trials provide a good estimate of the mean
as demonstrated by the relatively tight 95% confidence intervals for
our results. The SA, GAPR, GA, and GALS heuristics were all able to
improve upon the robustness values achieved by the Two-Phase
Greedy solution. Note that for these results all of the heuristics
were given an identical A constraint, thus, a comparison of the
mean robustness values achieved by each heuristic is a direct
comparison of the stochastic robustness ® that each heuristic
achieves versus the constant constraint A.

It is important to note that the confidence intervals of the SA,
GAPR, GA, and GALS heuristics all overlap, indicating that no one
heuristic is significantly better than another for these simulation
trials. The comparable performance of the SA heuristic and the
GA variants may be caused by the ease with which each heuristic
is able to find solutions with near unity robustness. That is, the
confidence intervals for all of these heuristics overlap and include
a stochastic robustness value of 100%.

Finally, although the robustness achieved by the Two-Phase
Greedy approach was significantly below that of the evolutionary
heuristics, the execution time of the Two-Phase Greedy approach
was significantly less than that of the other heuristics. For exam-
ple, a typical run of the Two-Phase Greedy approach in this envi-
ronment will complete in seconds where as all of the evolutionary
approaches require hours to complete processing.

To better visualize the path-relinking procedure, we plotted the
robustness attained by each step of the operation. Fig. 4 shows the
results of an example application of the path relinking crossover
operator taken from an actual simulation trial. The result was
obtained by transforming one chromosome into another using our
defined path relinking procedure. Recall that after each application
to compute node assignment is modified, the local search operator

1 The eight compute nodes selected to be modeled were: Altos R510, Dell
PowerEdge 7150, Dell PowerEdge 2800, Fujitsu PRIMEPOWER 650, HP Workstation
12000, HP ProLiant ML370 G4, Sun Fire V65x, and Sun Fire X4100.

J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10 7

0.9 (-] \
0.8 1 \
0.7 1 u
0.6 -
0.5 -
0.4 1
0.3 A
0.2 -
0.1 -

robustness

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

64 67 70 73 76 79 82 85 88 91 94 97 10010310610911211511812112412

number of task changes

------- best encountered — path relinking —— -local search

Fig. 4. An example result obtained by applying the path relinking crossover procedure in one direction.

is applied to the intermediate solution. The solid line of the figure
corresponds to the robustness of the current chromosome before
local search has been applied and the dashed line corresponds
to the robustness of the allocation after applying local search.
The dotted line provides an indication of the highest robustness
value encountered during this run of path relinking. The first
robustness value of the dashed line corresponds to the first parent
in the crossover and the last robustness value corresponds to the
robustness value of the alternate parent. In this example, the initial
allocation of the first parent had a robustness value of 0.9808 and
the alternate parent had a robustness of 0.8224. Applying the path
relinking crossover operator produced a final allocation with a
robustness value of 0.9981.

6. Maximizing robustness for tighter A values

6.1. Overview

Maximizing robustness using the heuristic approaches de-
scribed earlier can function properly only if the robustness of the
initial and intermediate solutions is non-zero. That is, in all of the
presented techniques, intermediate resource allocations are di-
rectly compared to one another based on robustness and ranked
accordingly. Thus, if the robustness of two allocations is equal to
zero, then we cannot discriminate between them based on robust-
ness alone. For this case, we would like to identify an alternative
metric for evaluating resource allocations that can always discrim-
inate between resource allocations whose robustness value is zero.
The metric that we use is the expected makespan of a given re-
source allocation, which allows us to differentiate between solu-
tions that both have a zero robustness value.

In general, this approach enables us to transform the resource
allocation problem from the robustness space, where the fitness of
each solution is limited to the range [0, 1], into a makespan prob-
lem where the dynamic range is not limited and can be any posi-
tive real number. In this section, we prove that if the makespan of
aresource allocation is less than or equal to A then the robustness
of that allocation will be non-zero. Using this technique, we can
generate a population where all resource allocations have a non-
zero robustness value. We then evaluate the robustness of each
allocation to transform the population back into the robustness
space and begin to directly maximize robustness using the com-
plex heuristics of Section 4.

In the next subsection, we prove that if the expected makespan
for a given resource allocation is less than or equal to A, then
the stochastic robustness value of that allocation will be non-zero.
In Section 6.3, we define a procedure for using this technique
to seed our GA heuristics, ensuring that all members of the
initial population have non-zero robustness values. This section
concludes with our results in Section 6.4.

6.2. Alternative metric for evaluating allocations

Define the expected makespan of a resource allocation, denoted
by u, as the makespan of the resource allocation as found using
the expectation of machine completion time distributions. Let p;

be the expected completion time of machine j, i.e,, u; = E[y;] =
ZL E[n;]. Thus, u can be found by taking the max over all u;,

M = Mmax ;. (5)
1<j<M

A useful property of the expected makespan of an allocation is
that if w < A then 6 is bounded below by (0.5) and thus the
robustness of the allocation is guaranteed to be non-zero. To prove
this property, assume that 1 < A. Define 6; to be the robustness
of the completion time distribution for machine j relative to A.
Recall that u is the maximum expected completion time over all
machines, which implies that u; < u < A(Yj). If u; = A, then
6; must equal 0.5 because y; is the mean of the completion time
distribution for machine j. Alternatively, if u; < A, then 6; > 0.5.
Thus,

0 = (]_[9j> > (0.5)M. (6)

1<j<M

Therefore, if there are M compute nodes with © < A, then 6§ >
(0.5). This proves that if the expected makespan of a resource
allocation is less than or equal to A, then the robustness of that
allocation is non-zero. Because each pmf consists of probabilities
for discrete time values (it is not continuous) and the expected
completion time may not correspond to exactly one of these values,
we replace the expected value of the pmf with the earliest possible
outcome that is greater than the expected value, ensuring that
Eq. (6) still holds.

In this case, if we can establish an initial population where each
resource allocation satisfies u < A, then our earlier robustness
GA heuristics can be applied to cases where A is tight. We make
the simplifying assumption that A has been selected such that
resource allocations exist that can satisfy this constraint on .

To establish an initial population using this method, we can
employ simpler minimization techniques that operate on the
mean execution times of applications as opposed to the entire
distribution of possible execution times. In the next subsection,
we describe a GA that minimizes the expected makespan of each
resource allocation (referred to as the Makespan-GA).

6.3. GA for establishing initial population

In our original robustness GA implementation from Section 4.2,
we employed a simple greedy heuristic to generate the initial

8 J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10

population. Unfortunately, if the A constraint is too small, then
this simple method of population generation will not produce
solutions with non-zero robustness values. Based on the discussion
of the previous subsection, we implemented a Makespan-GA
that minimizes the expected makespan of allocations. The final
population of the Makespan-GA can be used to define an initial
population for the robustness-based GAs whose members are
known to all have non-zero robustness values.

The implementation of the Makespan-GA operates in a manner
similar to the GAPR heuristic of Section 4.4, using both the
path relinking crossover operator and local search (but based on
minimizing the expected makespan). The fitness of each resource
allocation in the Makespan-GA is measured by the expected
makespan of the allocation instead of its robustness. Based on our
earlier analysis, if the expected makespan can be reduced to at
least A, then the resulting robustness of the allocation will be
non-zero. Thus, the Makespan-GA terminates when the expected
makespan of the worst member of the population is less than
or equal to A or a maximum number of iterations has elapsed.
Recall that the population is maintained in a sorted order according
to decreasing fitness value, i.e., the least fit chromosome is the
last member of the population. If the Makespan-GA terminates
because a maximum number of iterations has elapsed, then the
robustness GA can be populated with any members produced by
the Makespan-GA whose < A. In addition, it may be possible
to identify chromosomes where u > A and the robustness of the
solution is still non-zero. In our simulations, the Makespan-GA was
always able to find a complete initial population whose expected
makespan was less than or equal to A.

After the Makespan-GA terminates, we are left with a popu-
lation where the robustness value of every chromosome in the
population is non-zero. There are some final considerations that
must be accounted for prior to using the population to seed our
robustness-based GAs. Recall that in our earlier GA implementa-
tions we maintained the population in sorted order according to
the fitness of each chromosome. However, the order of the chro-
mosomes in the Makespan-GA is based on the expected makespan
and not robustness. Thus, before the population can be used in our
robustness-based GAs, each chromosome must be evaluated based
on robustness and the population re-sorted. Further, although the
Makespan-GA applied local search to each member of the popu-
lation, the local search was based on the expected makespan. To
ensure that the population consists only of local minima relative
to robustness, we apply the robustness based local search operator
to each chromosome, then insert the resulting chromosome into
the population, using the insertion procedure defined earlier. Con-
sequently, it is possible that after applying the robustness-based
local search to each chromosome and rebuilding the population
that some of the chromosomes will result in clones (i.e., duplicate
chromosomes). Because the insertion procedure of the robustness-
based GAs explicitly disallows clones, the initial population may
begin with fewer chromosomes than our desired population size.
However, the population will typically steadily grow back to the
predetermined population size in the first few iterations of the GA
and will remain fixed at our chosen population size for the remain-
der of the simulation. To demonstrate the application of this pro-
cedure, we use this technique to generate initial populations for all
of the GA variants.

6.4. Results for tighter A values

To evaluate the effectiveness of generating an initial population
for tighter A values using the Makespan-GA approach, we re-
ran our simulation trials for the GAPR and GALS heuristics with
a new A value that is tailored to each simulation trial. Because
these heuristics are capable of leveraging the entire Makespan-
GA population, as opposed to SA that modifies a single solution,

100

90 ==

80 T

70 1 I 1 -
8 60- . 3 - —
[
B so
2
2 a0

30

20

10

0 T

GALS GAPR

Fig. 5. A comparison of the average robustness values over 50 simulation trials
for the GALS, and GAPR heuristics using the modified initial population. In these
simulation trials, A was set using 120% of a known lower bound.

they are ideal for use in this context. Although the basic GA can
also leverage the population produced by the Makespan-GA, we
chose not to use it in this context because it does not leverage
the local search operator of GAPR and GALS. In these trials, the
A constraint was uniquely set for each simulation trial based on
the collection of tasks to be executed for that trial. In [13], we
presented a mechanism for calculating a lower bound on A. In this
work, we applied the lower bound calculation to each trial and used
120% of that lower bound value as the A constraint. This resulted
inan average A constraint of 506 time units as opposed to the fixed
A constraint of Section 5.2, i.e., A = 540.

For this tighter A constraint, our original method of generating
initial population members failed to produce any solutions with a
non-zero robustness value. Consequently, given a fixed number of
chromosome evaluations, i.e., 4,000,000, none of the GA variants
were able to produce resource allocations with non-zero robust-
ness values.

Alternatively, using the same number of chromosome evalu-
ations as in our earlier trials, the GALS heuristic using the initial
population from the Makespan-GA was able to produce solutions
with an average robustness value of 73.8% with a 95% confidence
interval of plus or minus 6% points. In addition, the GAPR heuristic
using the new initial population generated an average robustness
value of 89.6% with a 95% confidence interval of plus or minus 2%
points. These results, plotted in Fig. 5, clearly demonstrate the util-
ity of the proposed approach for generating resource allocations
with high robustness values under tighter A constraints. From the
plot, one may attempt to draw the conclusion that the GAPR heuris-
tic is superior to GALS, however, this may not be universally true
as evidenced by our earlier result for looser A constraints.

As a final comparison, we compared the results of the GAPR,
and GALS heuristics using the initial population produced by the
Makespan-GA to those of our initial methods for simulations where
A was set to 540, as was done in Section 5.2. For these simulations,
the GAPR and GALS heuristics both performed comparably using
both methods of initial population generation. This suggests that
the Makespan-GA method of generating an initial population is
effective for problems with both loose A constraints and tight A
constraints.

7. Related work

A universal framework for defining the robustness of resource
allocations in heterogeneous computing systems was addressed
in [15]. This work referred to the ability of a resource allocation
to tolerate uncertainty as the robustness of that resource allocation
and established the FePIA procedure for deriving a deterministic

J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10 9

robustness metric. In [13], the authors used the FePIA procedure
to define a robustness metric for static stochastic resource alloca-
tion environments. However, the research in [13] focused on min-
imizing the makespan of a stochastic resource allocation subject
to a constraint on the robustness of that allocation. In this cur-
rent paper, we have shown that it is possible to instead maximize
the robustness of a resource allocation given a constraint on the
allowed makespan.

In [6], the problem of robust resource allocation was addressed
for scheduling directed acyclic graphs (DAGs) in a heterogeneous
computing environment. Robustness was quantitatively measured
as the “critical” (i.e., the smallest) slack among all components that
comprise a given DAG. The authors focused on designing resource
allocations that maximized robustness for a deterministic environ-
ment. Whereas, our robustness metric is based on stochastic infor-
mation about the uncertainties.

In [25], the authors present a comprehensive study of robust-
ness measures suitable to a task graph allocation model. Using this
study, they propose a suite of heuristics focused on balancing the
tradeoff between robustness and makespan. In contrast, our work
is focused solely on maximizing robustness given a constraint on
the completion time of the allocation.

In a related area, Lombardi et al., investigate the application
of robustness to scheduling tasks with precedence constraints
in a multi-core environment where the task mapping is pre-
determined and each application is subject to a hard deadline. That
is, in [26], the authors present a scheduling technique for a sin-
gle multi-core processor and assume that the set of tasks assigned
to that processor is given. As opposed to our research, where we
address the mapping of tasks to processors and assume that each
processor is single threaded. As such, [26] presents a clearly com-
plimentary research environment to that studied here. In [26], task
completion time variability is captured through bounds extracted
from a worst case execution time analysis as opposed to directly
capturing the stochastic information about execution time uncer-
tainties as is done in this research.

Our methodology requires that the uncertainty in system pa-
rameters can be modeled as stochastic variables. A number of
methodologies exist for modeling the stochastic behavior of ap-
plication execution times (e.g., [27,28,12]). In [27], a method is
presented for combining stochastic task execution times to deter-
mine task completion time distributions. Our work leverages this
method of combining independent task execution time distribu-
tions and extends it by defining a means for measuring the ro-
bustness of a resource allocation against an expressed set of QoS
constraints.

In [29], the authors present the application of stochastic robust-
ness to measuring the impact of inaccurate execution time infor-
mation on stochastic resource allocations. The authors also present
three greedy heuristics for producing static resource allocations of-
ten used in the literature. The Min-Min heuristic that the authors
present is analogous to the Two-Phase Greedy heuristic presented
in this work. However, in their use of the Min-Min heuristic the
authors limit the pool of compute resources for each allocation de-
cision to those that provide a minimum probability of completing
the given task on time. Unlike their Min—-Min heuristic design, our
SA, GA, GAPR, and GALS heuristics all leverage stochastic robust-
ness information during resource allocation to maximize the prob-
ability that all tasks finish by the completion time constraint.

In [7], the authors demonstrate the use of a GA to minimize
the expected system makespan of a resource allocation in a het-
erogeneous computing environment where task execution times
are modeled as random variables. This research demonstrates the
efficacy of a stochastic approach to resource scheduling, by show-
ing that it can significantly reduce system makespan as compared
to some well known scheduling heuristics that are based on a

deterministic modeling of task execution times. The heuristics pre-
sented in that study were used in the stochastic domain to mini-
mize the expected system makespan given a stochastic model of
task execution times, i.e., the fitness metric in that approach was
based on the first moment of random variables. The emphasis of
our approach is on quantitatively comparing one resource alloca-
tion to another based on the stochastic robustness metric, i.e., the
probability of satisfying a given makespan constraint. The success
of the Genetic Algorithm applied to stochastic resource allocation
in [7] was a motivating factor for our selection of a Genetic Al-
gorithm in this study; however, our GA methodology differs sig-
nificantly from that in [7], for both the robustness GA and the
Makespan-GA.

8. Conclusions

This research presented several heuristics for directly maximiz-
ing the robustness of a resource allocation. The GA, GAPR, GALS,
and SA techniques were shown to significantly outperform a sim-
pler Two-Phase greedy heuristic. A comparison of these heuristics
revealed the great potential for the GALS and GAPR heuristics to ef-
ficiently manage resources in distributed heterogeneous comput-
ing systems operating under uncertainty. This gain in performance
was achieved through a unique application of local search and path
relinking within the context of a Genetic Algorithm.

We also proposed a new method for extending the use
of our robustness approach to environments where it is non-
trivial to find resource allocations that provide a non-zero
robustness value under tight deadline constraints. We applied this
methodology to create the Makespan-GA heuristic for generating
an initial population for use in our robustness-based GA heuristics
that attempt to directly maximize the robustness of resource
allocations subject to a constraint on the makespan of the solution.
Our simulations clearly indicate the viability of this combined
approach for maximizing the stochastic robustness of resource
allocations.

Acknowledgments

The authors would like to thank Samee Khan, Abdulla Al-
Qawasmeh, and Luis Bricefio for their valuable comments. A pre-
liminary version of portions of this material was presented at the
Parallel and Distributed Processing Techniques and Applications
conference [30]. This research was supported by the United States
National Science Foundation (NSF) under grant numbers CNS-
0615170, CNS-0905399, and CCF-1302693, and by the Colorado
State University George T. Abell Endowment. This research used
the CSU ISTeC Cray system supported by NSF grant CNS-0923386.

References

[1] T.D. Braun, HJ. Siegel, N. Beck, L. Boloni, RF. Freund, D. Hensgen,
M. Maheswaran, Al Reuther, J.P. Robertson, M.D. Theys, B. Yao, A comparison
of eleven static heuristics for mapping a class of independent tasks onto het-
erogeneous distributed computing systems, Journal of Parallel and Distributed
Computing 61 (6) (2001) 810-837.

[2] X. Tang, K. Li, G. Liao, K. Fang, F. Wu, A stochastic scheduling algorithm for
precedence constrained tasks on grid, Future Generation Computer Systems
27 (8)(2011) 1083-1091.

[3] E.G. Coffman (Ed.), Computer and Job-Shop Scheduling Theory, John Wiley &
Sons, New York, NY, 1976.

[4] O.H.Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on
non-identical processors, Journal of the ACM 24 (2) (1977) 280-289.

[5] S. Ali, T.D. Braun, HJ. Siegel, A.A. Maciejewski, N. Beck, L. Boloni,
M. Maheswaran, A Reuther,]J.P. Robertson, M.D. Theys, B. Yao, Char-
acterizing Resource Allocation Heuristics for Heterogeneous Computing
Systems, in: Advances in Computers, Elsevier, Amsterdam, The Netherlands,
2005, pp. 91-128.

[6] L. Boloni, D. Marinescu, Robust scheduling of metaprograms, Journal of
Scheduling 5 (5) (2002) 395-412.

http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref1
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref2
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref3
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref4
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref5
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref6

10 J. Smith et al. / Future Generation Computer Systems 33 (2014) 1-10

[7] A. Dogan, F. Ozgiiner, Genetic algorithm based scheduling of meta-tasks
with stochastic execution times in heterogeneous computing systems, Cluster
Computing 2 (2004) 177-190.

[8] Y.C. Lee, AY. Zomaya, Rescheduling for reliable job completion with the
support of clouds, Future Generation Computer Systems 26 (8) (2012)
1192-1199.

[9] M.Maheswaran, S.Ali, H.]. Siegel, D. Hensgen, R.F. Freund, Dynamic mapping of
a class of independent tasks onto heterogeneous computing systems, Journal
of Parallel and Distributed Computing 59 (2) (1999) 107-131.

[10] A.M.Mehta,]. Smith, HJ. Siegel, A.A. Maciejewski, A. Jayaseelan, B. Ye, Dynamic
resource allocation heuristics that manage tradeoff between makespan and
robustness, Journal of Supercomputing 42 (1) (2007) 33-58.

[11] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference,
Springer Science+Business Media, New York, NY, 2005.

[12] Y.A. Li, J.K. Antonio, HJ. Siegel, M. Tan, D.W. Watson, Determining the
execution time distribution for a data parallel program in a heterogeneous
computing environment, Journal of Parallel and Distributed Computing 44 (1)
(1997) 35-52.

[13] V. Shestak, J. Smith, A.A. Maciejewski, H.J. Siegel, Stochastic robustness metric
and its use for static resource allocations, Journal of Parallel and Distributed
Computing (2008).

[14] A. Leon-Garcia, Probability & Random Processes for Electrical Engineering,
Addison Wesley, Reading, MA, 1989.

[15] S. Ali, A.A. Maciejewski, H.J. Siegel, J.-K. Kim, Measuring the robustness of a
resource allocation, IEEE Transactions on Parallel and Distributed Systems 15
(7)(2004) 630-641.

[16] S. Ali, A.A. Maciejewski, H.J. Siegel,]J.-K. Kim, Static heuristics for robust
resource allocation of continuously executing applications, Journal of Parallel
and Distributed Computing 68 (8) (2008) 1070-1080.

[17] Z.Michalewicz, D.B. Fogel (Eds.), How to Solve It: Modern Heuristics, Springer-
Verlag, New York, NY, 2000.

[18] D.Whitley, The Genitor algorithm and selective pressure: Why rank-based al-
location of reproductive trials is best, in: Proceedings of the 3rd International
Conference on Genetic Algorithms, Jun. 1989, pp. 116-121.

[19] E.K.P.Chong, S.H. Zak, An Introduction to Optimization, second ed., John Wiley,
New York, NY, 2001.

[20] P. Sugavanam, HJ. Siegel, A.A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel,
A. Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali,]J. Zhang,
M. Aydin, P. Lee, K. Guru, M. Raskey, A. Pippin, Robust static allocation of
resources for independent tasks under makespan and dollar cost constraints,
Journal of Parallel and Distributed Computing 67 (4) (2007) 400-416.

[21] CR. Reeves, T. Yamada, Genetic algorithms, path relinking and the flowshop
sequencing problem, Evolutionary Computation Journal 6 (1) (1998) 230-234.

[22] F. Junyent, V. Chandrasekar, D. McLaughlin, S. Frasier, E. Insanic, R. Ahmed,
N. Bharadwaj, E. Knapp, L. Krnan, R. Tessler, Salient features of radar nodes of
the first generation netrad system, in: Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium 2005, IGARSS ‘05, Jul. 2005,
pp. 420-423.

[23] N. Bharadwaj, V. Chandrasekar, Waveform design for casa x-band radars, in:
Proceedings of the 32nd Conference on Radar Meteorology of the American
Meteorology Society, Oct. 2005.

[24] Standard performance evaluation corporation. Accessed Feb. 2006. (Online).
Available: http://www.spec.org/, 2006.

[25] L.C. Canon, E. Jeannot, Evaluation and optimization of the robustness of DAG
schedules in heterogeneous environments, IEEE Transactions on Parallel and
Distributed Systems 21 (4) (2010) 532-546.

[26] M. Lombardi, M. Milano, L. Benini, Robust scheduling of task graphs under
execution time uncertainty, IEEE Transactions on Computers 62 (1) (2013)
98-111.

[27] G. Bernat, A. Colin, S.M. Peters, WCET analysis of probabilistic hard real-time
systems, in: Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS '02), 2002.

[28] L. David, I. Puaut, Static determination of probabilistic execution times, in:
Proceedings of the 16th Euromicro Conference on Real-Time Systems, ECRTS
'04, Jun. 2004.

[29] J. Li, Z. Ming, M. Qiu, G. Quan, X. Qin, T. Chen, Resource allocation robustness
in multi-core embedded systems with inaccurate information, Journal of
Systems Architecture 57 (9) (2011) 840-849.

[30] J. Smith, HJ. Siegel, A.A. Maciejewski, Iterative techniques for maximizing
stochastic robustness of a static resource allocation in periodic sensor driven
clusters, in: Proceedings of the 2008 International Conference on Parallel and
Distributed Processing Technologies and Applications, PDPTA 2008, Vol. 1,
2008, pp. 3-9.

Jay Smith received his Ph.D. in Electrical and Computer
Engineering from Colorado State University in 2008.
Jay is currently a researcher for Lagrange Systems. In
addition to his position at Lagrange Systems, Jay is a
research faculty member in the Electrical and Computer

. Engineering Department at Colorado State University. His
research interests include high performance computing
and resource management. He is a member of the IEEE and
the ACM.

Anthony A. Maciejewski received the B.S.E.E., M.S, and
Ph.D. degrees from Ohio State University in 1982, 1984,
and 1987. From 1988 to 2001 he was a professor of
Electrical and Computer Engineering at Purdue Univer-
sity, West Lafayette. He is currently a Professor and De-
partment Head of Electrical and Computer Engineering
at Colorado State University. He is a Fellow of the IEEE,
with research interests that include robotics and high
performance computing. A complete vita is available at:
http://www.engr.colostate.edu/~aam.

Howard Jay Siegel was appointed the Abell Endowed
Chair Distinguished Professor of Electrical and Computer
Engineering at Colorado State University (CSU) in 2001,
where he is also a Professor of Computer Science. He
is the Director of the CSU Information Science and
Technology Center (ISTeC), a university-wide organization
for promoting, facilitating, and enhancing CSU’s research,
education, and outreach activities pertaining to the design
and innovative application of computer, communication,
and information systems. From 1976 to 2001, he was a

o professor at Purdue University. Prof. Siegel is a Fellow of
the IEEE and a Fellow of the ACM. He received B.S. degrees from the Massachusetts
Institute of Technology (MIT), and the M.A., M.S.E., and Ph.D. degrees from Princeton
University. He has co-authored over 400 technical papers. His research interests
include robust computing systems, resource allocation in computing systems,
heterogeneous parallel and distributed computing and communications, parallel
algorithms, and parallel machine interconnection networks. He has been an
international keynote speaker and tutorial lecturer, and has consulted for industry
and government. Homepage: www.engr.colostate.edu/~hj.

http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref7
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref8
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref9
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref10
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref11
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref12
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref13
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref14
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref15
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref16
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref17
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref19
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref20
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref21
http://www.spec.org/
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref25
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref26
http://refhub.elsevier.com/S0167-739X(13)00211-2/sbref29
http://www.engr.colostate.edu/~aam
http://www.engr.colostate.edu/~hj

	Maximizing stochastic robustness of static resource allocations in a periodic sensor driven cluster
	Introduction
	System model environment
	Problem statement
	Heuristics
	Two-phase greedy
	Genetic algorithm
	Genetic algorithm with local search (GALS)
	Genetic algorithm with path relinking (GAPR)
	Simulated annealing

	Simulation study for loose Λ
	Setup
	Results

	Maximizing robustness for tighter Λ values
	Overview
	Alternative metric for evaluating allocations
	GA for establishing initial population
	Results for tighter Λ values

	Related work
	Conclusions
	Acknowledgments
	References

