
Resource Allocation in a
Cluster Based Imaging System

Jay Smith†∗, Vladimir Shestak†∗,
Suzy Price†, and Larry Teklits†

†IBM
Boulder, CO 80301

Email: {bigfun, vshestak, suzyp, larryt}@us.ibm.com

Howard Jay Siegel∗‡ and Prasanna Sugavanum∗

∗Electrical and Computer Engineering Department
‡Computer Science Department
Colorado State University

Fort Collins, CO 80523–1373
Email: {hj, psugavanum}@engr.colostate.edu

Abstract—Recently there has been an increased demand for
imaging systems in support of high-speed digital printing. The
required increase in performance in support of such systems
can be accomplished through an effective parallel execution of
image processing applications in a distributed cluster comput-
ing environment. We present a mathematical model of such a
cluster based raster imaging system. The output of the system
must be presented to a raster based display at regular intervals,
effectively establishing a hard deadline for the production of
each output image. Failure to complete a rasterization task
before its deadline will result in an interruption of service
that is unacceptable. The goal of this research was to design
a resource allocation heuristic capable of completing each
rasterization task before its deadline, thus, preventing any
service interruptions. This new heuristic is evaluated within
a simulation of the studied raster imaging system. We clearly
demonstrate the effectiveness of the heuristic by comparing
its results with the results of two resource allocation heuristics
commonly used in this type of system.
Index Terms—heterogeneous computing, resource manage-

ment, dynamic resource allocation, distributed computing

I. INTRODUCTION
Recently there has been an increased demand for imaging

systems in support of high-speed digital printing. The re-
quired increase in performance can be accomplished through
an effective parallel execution of image processing applica-
tions in a distributed computing environment. In this paper,
we present a mathematical model of a distributed raster
imaging system, where the output of the system must be
presented to a raster based display at regular intervals,
effectively establishing a hard deadline for the completion
of each output image. This mathematical model is used as
the basis for the design of a resource allocation heuristic
applicable to a given distributed computing environment.
The new heuristic is then evaluated within the context of a
simulation of the raster imaging system, where the results
of the heuristic are compared with the results of several
heuristics commonly used in systems of this type.
The primary contributions of this work are a mathematical

model of a dynamic distributed computing system with hard

deadlines on task execution times and an application of
this model to the design of a resource allocation heuristic
suitable for this type of system. In addition, we clearly
demonstrate the heuristic’s superiority over two common
resource management techniques.
In this system, an input stream of data, described using a

high level language known as a page description language
(pdl), e.g., postscript or the portable document format,
arrives at an imaging system for rasterization [8]. Requests
for rasterization of pdl images are processed by a dedicated
cluster of workstations, where individual pdl image requests,
referred to as sheetsides, are distributed to the cluster by
a centralized image dispatcher (CID). The collection of
sheetside requests together describe an image stream that
is displayed on a raster based device, e.g., a printer or
computer monitor. The frequency of requests and the mag-
nitude of the data required to describe each request pose a
considerable challenge for even today’s fastest workstations.
Input streams in this environment routinely consist of over
100,000 images, where each image typically requires 10–
100 megabytes of storage and successive image deadlines
are on the order of a tenth of a second apart.
For the studied environment, the images that comprise

the input datastream are required to be displayed in order
on the output device. That is, each pdl image has a unique
number assigning its place in the overall stream of images
and will be requested by the raster display in that order. In
addition, the system has a finite amount of storage capacity
(distributed evenly across the cluster of workstations) in
which to store rendered images, referred to as bitmaps. The
bitmaps to be displayed are retrieved at a regular interval
directly from the system output buffer by the display device.
By retrieving the first bitmap from an output buffer, a hard
deadline for each subsequent bitmap is established. Missing
a deadline for a required bitmap results in an interruption
of the display device that is unacceptable.
The studied raster image processing (RIP) system has

some additional special requirements that complicate the

task of assigning the stream of incoming pdl images to
available workstations. First, the system only has an estimate
of the time required to rasterize each incoming pdl image
and this estimate may differ subtantially from the actual
time required for rasterization. Many of the system design
decisions are motivated by an attempt to mitigate the impact
of this uncertainty.
Second, the overall system has finite input and output

storage capacity that constrains the number of pdl images
that can be rasterized in advance of the image stream being
consumed by the display device. Hence, there is a limit on
the number of pdl images that can be buffered in the system,
both as input pdl images and as output bitmaps. Finally,
the pdl images to be rasterized are continually arriving in
parallel with their consumption, i.e., the resource allocation
must be produced dynamically [14]. The general problem of
assigning tasks to workstations in a dynamic environment
has been shown to be NP-complete (e.g., [4], [5], [9]).
Consequently, dynamic resource allocation is an active area
of research [2], [6], [14], [15], [21], [23].
The concept of robustness of a resource allocation was

introduced in [1], [18], and later efforts applied the concept
to resource management [11], [15], [17], [19], [21]. This
research did not require an explicit measure of robustness,
however, the developed mathematical model does incorpo-
rate many of the same basic principals addressed in our
earlier work on robustness. In analyzing the image process-
ing system, we quickly identified the source of uncertainty
in the system, i.e., that rasterization times are uncertain
and the arrival ordering of sheetsides is unknown. This
uncertainty can impact the system by causing sheetsides to
miss their deadline, resulting in an interruption of service
that is unacceptable in this system. Clearly, the area of
robust operation within this system exists where bitmaps are
always available in advance of their deadlines. Therefore, a
simplistic quantification robustness in this system can be
defined as the difference in time between when a bitmap is
made available in an output buffer and when that bitmap is
retrieved for display. In reviewing our results, we compare
the three studied heuristics using a measure of this differ-
ence referred to as bitmap lifetime, where a robust heuristic
always maintains a bitmap lifetime that is greater than 0.
In the next section, we present the details of the system

model used to design the mathematical model of RIP com-
pletion times presented in Section III. The new resource al-
location heuristic that incorporates this mathematical model
for RIP completion times is presented in Section IV. Section
V presents the details of the simulation setup used to
evaluate the heuristic and the results are presented in Section
VI. A sampling of related work is in Section VII.

II. SYSTEM MODEL

In this environment, a collection of workstations ded-
icated to image rasterization are controlled by a single
computer, known as the head node. Individual pdl images,
referred to as sheetsides, are transferred to the head node.
Each sheetside completely describes an entire display image
suitable for the output device.
Input sheetsides are queued for rasterization in the Head

Node Input Queue (HNIQ). The CID, in the head node,
assigns sheetsides to workstations for rasterization. After
assignment, the head node places the sheetside in a queue
for a transmitter that will then transmit the data to its
destination. The size of the transmitter queue is limited to
only two sheetsides and it may only transfer one sheetside
at a time. Also, once a sheetside has been placed in the
transfer queue, the sheetside’s destination workstation can
no longer be modified. Each workstation has a finite input
buffer capacity for storing sheetsides prior to rasterization.
Therefore, before the incoming sheetside can be transfered,
the head node must ensure that sufficient capacity exists
in the input buffer of the receiving workstation to receive
the file. If there is sufficient input buffer capacity, then the
sheetside may be queued up for transfer.
It is assumed that M heterogeneous dedicated worksta-

tions are available to convert pdl sheetsides to bitmaps.
Each workstation is interconnected to the head node via a 1
Gbit/second ethernet network and interconnected to the two
output display devices using a 4Gbit/second fiber channel.
The memory of each workstation is divided into two blocks,
where one block is used to store sheetside pdl files (the input
to rasterization) and the other block is used to store output
bitmaps. The sheetsides in the input block are accessed in
a FIFO fashion.
When a workstation completes rasterization of a sheet-

side, notification is sent to the head node, and the appropri-
ate display device, indicating the sheetside completion. The
display device retrieves completed bitmaps for display from
the output buffer of the workstation where the rasterization
was performed. The input buffer of the display device has
sufficient capacity to store two bitmaps, i.e., the bitmap cur-
rently being displayed and the next bitmap to be displayed.
In this system, the size of the bitmaps is constant and the
time required to display the bitmap is also constant.

III. MODEL OF RIP COMPLETION TIME
This mathematical model defines a means for calculating

the deadline for a given sheetside, as well as determining the
estimated RIP completion time for a given sheetside. Recall
that every sheetside is subject to a hard deadline. To prevent
a service interruption, the sheetside must have completed
rasterization, and must be available for consumption in the
input buffer of the display device by that deadline. To calcu-
late the hard deadline for a sheetside, let t0 be the absolute

wall-clock start time for both display devices. Starting at
t0, each display will require a new bitmap every tdisplay

seconds, where tdisplay is the time required to display a
bitmap. Sheetsides are numbered starting with 1. For the
kth actual sheetside of the job, denoted Sk, the bitmap has
to be available for printing at time t0 + tdisplay

�
Sk−1

2

�
, if

k is odd, and at time t0 + tdisplay

�
Sk
2

�
, if k is even. Let

tbitmap
tran be the bitmap transfer time from any workstation to
either display device. Then, Sk’s deadline td[Sk] is the latest
wall-clock time for a workstation to produce Sk’s bitmap.
Sheetsides are divided between the two displays such that
the odd numbered sheetsides go to display 1 and the even
numbered sheetsides go to display 2.

td[Sk] =
�

t0 + tdisplay

�
Sk−1

2

�
− tbitmap

tran if odd Sk;
t0 + tdisplay

�
Sk
2

�
− tbitmap

tran if even Sk
(1)

The value of td[Sk] will be used later to determine the
availability of output buffer space on a workstation. For
this purpose, the deadline equation needs to be expressed in
terms of the ordering of sheetsides on a given workstation.
Let BQj

i be the ith sheetside to have entered worksta-
tion j’s input queue for a given job. Define the operator
num(BQj

i) that evaluates to the actual sheetside number,
i.e., Sk = num(BQj

i). Then Sk in Equation 1 can be
replaced by num(BQj

i). Note that Sk and BQj
i represent

the same physical sheetdside and their notations will be used
interchangeably.
The estimated RIP completion time for a sheetside is

composed of the earliest possible time that rasterization can
begin and the estimated rasterization time. Let tcomp[BQj

i]
be the estimated completion time for a given sheetside BQj

i

on workstation j, let tstart[BQj
i] be the earliest possible

time that rasterization can begin, and let ERT [BQj
i] be

the estimated rasterization time for sheetside BQj
i . Then

tcomp[BQj
i] can be calculated as,

tcomp[BQj
i] = tstart[BQj

i] + ERT [BQj
i]. (2)

The estimated rasterization time, ERT [BQj
i], for each

sheetside is assumed known based on empirical data. There
are many well-known techniques for gathering execution
time estimates [7], [12], [13], [20], [24]. Therefore, calcu-
lating the estimated completion time for a sheetside amounts
to determining the earliest possible time that the sheetside
can begin rasterization. The start time for rasterization de-
pends on several factors: when the sheetside was transferred
to the workstation, when the previous sheetside assigned
to the workstation completed, and the availability of the
workstation’s output buffer.
To determine when a sheetside was (or will be) trans-

ferred to a workstation, we have to consider all other
sheetsides in the HNIQ that are ahead of it. Let Sk be the kth

sheetside to enter the HNIQ for a given job, where Sk−1 is

the sheetside ahead of Sk in the HNIQ. Then to evaluate the
estimated departure time for Sk to workstation j, the input
buffer capacity of workstation j must be determined. Space
in the input buffer is limited by two factors. The maximum
number of sheetsides (Q) allowed in the input buffer, and
the size in bytes of the buffer.
Recall that the estimated rasterization times are known to

be inaccurate relative to actual rasterization times; therefore,
the number of sheetsides that are allowed to queue up on
any given workstation is limited to a relatively small, fixed
number of pending sheetsides. This limitation attempts to
mitigate the impact of delays caused by under-estimating
sheetside rasterization times. If the size of the pdl file
describing sheetside Sk is less than or equal to the available
input buffer capacity of workstation j, then, assuming there
are fewer than Q sheetsides in workstation j’s input buffer,
Sk can be immediately sent to j following the transfer of
Sk−1 out of the head node. Otherwise, Sk will be delayed at
the head node for the amount of time required for a certain
number of sheetsides previously assigned to workstation j
to be rasterized, thus, creating buffer capacity sufficient to
accomodate the pdl file of sheetside Sk or for the number
of pending sheetsides on workstation j to be less than Q.
To calculate the available input buffer capacity at work-

station j, let K be the sequence of sheetsides that are in
workstation j’s input buffer when the head node transmitter
is ready to send sheetside Sk. Note that this will include any
sheetside currently being rasterized by workstation j. Given
the operator size(Sk) that gives the size of sheetside Sk’s pdl
file in bytes and let CAP j

in describe the total input buffer
capacity of workstation j. Then, the available capacity of
workstation j’s input buffer, denoted ACj

in, is

ACj
in = CAP j

in −
�

∀Sk∈K
size(Sk). (3)

Define txdept[Sk−1] as the departure time of Sk−1 to work-
station x, and let tsdf

tran[Sk−1] be the time required to
transfer the sheetside description file describing Sk−1. If
size(Sk) ≤ ACj

in and |K| < Q, Sk can depart at time

tjdept[Sk] = txdept[Sk−1] + tsdf
tran[Sk−1]. (4)

Otherwise, Sk must wait for a sufficient number of sheet-
sides to be processed from workstation j’s input queue,
to ensure that these two conditions hold. If after process-
ing some sheetside Sm ∈ K these conditions hold, then
tjdept[Sk] = tjcomp[Sm]. If k = 1, i.e., Sk is the first
sheetside to be dispatched by the CID, then Sk can depart
immediately.
Prior to rasterization, accurately determining when ras-

terization can begin for some sheetside BQj
i , where Sk =

num(BQj
i), must also account for possible delays incurred

due to the limited capacity of the output buffer on each
workstation. Consider workstation j with output buffer

capacity CAP j
out. Because bitmaps are all assumed to be

the same size, i.e., require the same number of bytes,
the number of bitmaps that could be stored in the output
buffer of any workstation is constant and known in advance.
Assume that N bitmaps can be placed in the output buffer
of a given workstation. Define the delay to begin processing
sheetside BQj

i , denoted ∆out[BQj
i], as the time that BQj

i
must wait after arriving at the head of the workstation’s
input queue until there is sufficient capacity in the output
buffer of the workstation to store the output bitmap. To
quantitatively determine ∆out[BQj

i], there are three cases
to consider. First, if fewer than N sheetsides have entered
workstation j’s input queue, then the output buffer of work-
station j cannot be full, i.e., ∆out[BQj

i] = 0. In the second
case, assume that more than N sheetsides have entered
workstation j’s input queue, but at the time when sheetside
BQj

i completes there will be at least one free slot in
workstation j’s output buffer, i.e., at least sheetside BQj

i−N

has left the output buffer, then ∆out[BQj
i] = 0. In the final

case, if the output buffer of workstation j is full when
sheetside BQj

i−1 completes, then BQj
i must wait for an

opening in the output buffer before its processing can begin.
Therefore, sheetside BQj

i will be delayed until the sheetside
at the head of the workstation’s output buffer completes
transmission to the raster device. The three delay cases for
BQj

i to begin processing can be described succinctly as
follows.

(case 1) if i < N,

∆out[BQj
i] = 0 (5)

(case 2) if td[BQi−N] + tbitmap
tran ≤ tcomp[BQj

i−1],

∆out[BQj
i] = 0 (6)

(case 3) otherwise,
∆out[BQj

i] = td[BQj
i−N] + tbitmap

tran − tcomp[BQj
i−1] (7)

Using ∆out[BQj
i], we can define the estimated rasteriza-

tion start time of sheetside BQj
i . That is, tstart[BQj

i] occurs
when two conditions are satisfied: BQj

i is present at the
head of the input queue on workstation j, and workstation
j’s output buffer has sufficient capacity to accomodate the
rasterization result. If these conditions are not satisfied, then
tstart[BQj

i] is defined by one of two cases. First, if there
is no opening in the output buffer of workstation j when
BQj

i−1 completes and BQj
i is available at the head of the

input buffer of workstation j, then

tstart[BQj
i] = tcomp[BQj

i−1] + ∆out[BQj
i]. (8)

In the second case, if there is an opening in the output buffer
of workstation j when BQj

i−1 completes and BQj
i is not

in the input buffer of workstation j, then the estimated start

time of BQj
i is equal to the arrival time of BQj

i in the input
buffer i.e.,

tstart[BQj
i] = tdept[BQj

i] + tsdf
tran[BQj

i]. (9)

That is, as soon as BQj
i arrives in the input buffer, it will

be rasterized without further delay. Note that if there is no
opening in the output buffer on workstation j and BQj

i is
not in the input buffer of workstation j, then one of the
previous two cases will occur some time in the future. The
two equations corresponding to the two cases for the earliest
rasterization start time can be combined to calculate the
estimated start time for BQj

i as follows,

tstart[BQj
i] = max{

�
tcomp[BQj

i−1] + ∆out[BQj
i]

�
,

�
tdept[BQj

i] + tsdf
tran[BQj

i]
�
}. (10)

Note that calculation of tcomp[BQj
i] is based on a recursion

because it depends on tstart[BQj
i] which in turn relies on

tcomp[BQj
i−1]. The recursion basis is formed with BQj

1,
whose tcomp[BQj

1] is found as,

tcomp[BQj
1] =

ERT [BQj
1] + tdept[BQj

1] + tsdf
tran[BQj

1]. (11)

That is, because BQj
1 is the first sheetside to be rasterized

on workstation j, there can be no delays incurred from
processing earlier sheetsides on this workstation.

IV. MINIMUM RIP COMPLETION TIME HEURISTIC
(MRCT)

The resource allocation heuristic described in this section
assumes that the system is in a steady state of operation, i.e.,
some sheetsides have already been rasterized and the start
time t0 for the display devices is known. In this situation,
sheetsides are dispatched to the workstation that provides
the minimum RIP completion time as defined in the previous
section. That is, tcomp[Sk] is calculated for every worksta-
tion j, and the workstation that gives the minimum value
is selected. Because this is a dynamic environment where
sheetsides are arriving for rasterization while rasterization of
other sheetsides is completing, the minimum RIP comple-
tion time workstation is time dependent. When rasterization
is complete for a given sheetside, the actual time required for
rasterization becomes known, and a control message is sent
to the head node informing it of the completion. The head
node then updates the recurrence equation for calculating
the completion time of any subsequent sheetsides with this
new information, thus, the RIP completion time estimates
become more accurate. Consequently, the minimum RIP
completion time workstation for a given sheetside may
change during execution.
Because the execution time estimates for rasterization are

known to be inaccurate relative to actual execution times,

the heuristic must account for cases where the estimated
RIP completion time is significantly under-estimated. For
an under-estimated RIP completion time to be significant,
another workstation in the system must have a smaller or
equivalent completion time to the actual RIP completion
time that has been under-estimated. The time at which
the under-estimate becomes significant is referred to as the
invalidation time for the workstation j, denoted INV Tj .
Recall, when a workstation completes rasterizing a sheet-

side a notification is sent to the head node to inform it of
the completion. Because of this feedback, the head node can
calculate the earliest expected feedback time (EEFTj) for
the completion of the sheetside currently being rasterized on
workstation j, using the start time of the rasterization and
the expected rasterization execution time. Using EEFTj

and the estimated completion time of the best workstation
(j) and the next best workstation (x), an invalidation time
for a given workstation j can be calculated as follows,

INV Tj = EEFTj +
�
txcomp[Sk]− tjcomp[Sk]

�
. (12)

MRCT begins by calculating the tjcomp[Sk] values for
sheetside Sk for all of the workstations in the system, where
Sk is assumed to be at the head of the head node input
queue. The workstations are then ranked in ascending order
according to their tjcomp[Sk] value in a table. Once the
ordering has been established, the INV Tj values can be
calculated for each of the workstations. If any of the INV Tj

values are in the past, then the corresponding workstations
are “invalidated.” The MRCT heuristic will not consider
any invalidated workstations during allocation, i.e., while
a workstation is marked as invalid no sheetsides will be
assigned to it. When feedback regarding a sheetside com-
pletion on a workstation is received, the EEFTj , tjcomp[Si],
and INV Tj values are recalculated and the invalidation
status of the workstation is reset to valid.
After MRCT creates the table, if there is room in the

input buffer of the highest ranked workstation, i.e., ACj
in >

size(Si) and |K| < Q, and there is a free slot in the transfer
queue, then Si is assigned to the selected workstation and
placed in the transfer queue. If any of the required condi-
tions is not satisfied, then the conditions will be satisfied
some time in the future. As each workstation completes a
sheetside, the table for Sk is updated and reordered.

V. SIMULATION SETUP
To evaluate the heuristic, we created a simulation model

of the real system and executed the MRCT heuristic using
jobs that included on the order of 100,000 sheetsides. The
simulation consisted of a head node connected by a gigabit
ethernet network to four workstations used to process the
incoming jobs. The workstations are connected to the two
raster display devices by a four gigabit fiber channel. It is
assumed that the raster display device requires 0.11 seconds

to display each output bitmap. The mean sheetside rasteriza-
tion time is assumed to be 0.22 seconds. The simulation was
developed using the opNet simulation environment [16].
For comparison, we also implemented a round-robin

heuristic and a random assignment heuristic. Round-robin
tries to assign the same number of sheetsides to each
workstation in the cluster by defining an arbitrary fixed
ordering of the workstations and repeatedly assigning one
sheetside to each workstation in the ordering as buffer
sizes permit [22]. If there is insufficient capacity in the
input buffer of workstation j or there are greater than Q
sheetsides in the input buffer already, then round-robin waits
until both of these conditions are satisfied on workstation
j so that the machine ordering is obeyed. Consequently,
round-robin ignores the current workload on workstations,
instead relying on a strict ordering of sheetside assignments
to “balance” the workload among machines. The random
assignment heuristic instead randomly assigns sheetsides to
workstations with no regard to workstation workloads or
sheetside assignment order [22].
Although the simulation study did not attempt to directly

evaluate a startup strategy for starting the displays, the
simulation required some startup to begin execution. For
this simulation study, we chose a simplistic strategy where
the sheetsides are allocated to workstations in a round-
robin fashion, prior to starting the displays, until all of the
workstation output buffers are full. At this point, the CID
begins to use one of the three studied heuristics to allocate
the remaining sheetsides for the remainder of the simulation.

VI. SIMULATION RESULTS

The primary goal of the system is to ensure that all incom-
ing sheetsides are rasterized and available by their deadline
for display. To assess whether a sheetside is available by
its deadline, we defined a new measure known as “bitmap
lifetime”. Bitmap lifetime is measured as the time difference
between when the rasterized image is made available in
some output buffer and when the raster display consumes
the image from the system, i.e., the amount of time that a
bitmap lives in an output buffer of the system before it is
displayed.
Figure 1 presents the results of the simulation study in

terms of bitmap lifetime. The plots show the bitmap lifetime
values for each bitmap consumed by the system for both the
MRCT and round-robin heuristics. The random assignment
heuristic results are not plotted in Figure 1, because nearly
all of the processed sheetsides had bitmap lifetimes that
were nearly 0, i.e., random assignment continually failed
to deliver bitmaps when they were needed. If a bitmap’s
lifetime value is close to 0, then the display device may
have to stop to wait for the bitmap to become available—
which is unacceptable in practice. In a large scale production
printing environment, the paper where the raster device

is displaying the images cannot be immediately stopped
to wait for bitmaps to become available. Attempting to
abruptly stop the paper may ruin the result, e.g., by tearing
the paper.
Because a bitmap must always be transferred to a display

device, the minimum possible bitmap lifetime is tbitmap
tran ,

i.e., near 0. Intuitively, if the bitmap lifetime for any bitmap
has reached this value, then the bitmap was consumed by
the display device as soon as it was created. In general, this
implies that the display was ready to display the bitmap
prior to it having been created. Alternatively, if the display
is forced to wait for a bitmap to be created, then based on
our model, this implies that the bitmap lifetime was tbitmap

tran .
In the plots of Figure 1, the initial bitmap lifetimes are

high relative to the mean bitmap lifetime. These artificially
high values occur before t0, i.e., during this time the
displays have not started to consume bitmaps. Thus, the
initial bitmap lifetimes are equal to the time required to fill
up the output buffers on all of the workstations prior to
starting the display device.
The simulation required that each heuristic rasterize the

same number of sheetsides on the same set of workstations
(four in this study) where the output was consumed by two
displays. In the case of the random assignment heuristic,
the delays in processing, e.g., the total time that the printer
was idle waiting for data, caused the simulation run time
to be significantly greater than the other two heuristics.
The round-robin heuristic is able to complete the entire
run in only slightly more time than MRCT, however, it
did experience a significant number of service interruptions
as a result of its allocation decisions. In contrast, the
MRCT heuristic is able to complete the entire run with
no interruptions. For the MRCT heuristic, bitmap lifetimes
were in the range of [1.64s,16s] throughout the simulation.
These results demonstrate the utility of the mathematical
model within the context of a resource allocation heuristic.

VII. RELATED WORK

The system studied in this research can be considered
as a special-purpose distributed computing system, where
workstations are dedicated to serving a single continu-
ous stream of tasks (sheetsides) with hard deadlines and
identical execution priorities. In contrast, a general-purpose
computer cluster usually executes job requests from multiple
users and jobs may have relative priorities. For example,
batch job requests submitted to the NASA Ames iPSC/860
cluster controlled by the Portable Batch System (PBS),
described in [3], are placed in one of the node’s execution
queues according to the priority level associated with a job.
Jobs in each queue are fetched for execution in a first-come
first-served manner with non-preemptive switching among
the queues. The PBS Task Manager simply follows the
mapping policy (manually created and modified on a day-

(a) round-robin result

(b) MRCT result

Fig. 1. Sample plots of the results for two of the three heuristics (a)
round-robin, (b) MRCT.

to-day basis by a system administrator) while taking into
consideration current system load.
According to the literature, the problem of workload

distribution considered in our research falls into the category
of dynamic resource allocation, assuming that multiple
invocations of a resource allocation heuristic are overlapped
in time with task arrivals. In contrast, static mapping tech-
niques are based on the assumption that the complete set
of tasks considered for mapping is known a priori, i.e., the
mapping is done prior to the execution of any of the tasks.
The general problem of dynamically allocating a class of

independent tasks onto heterogeneous computing systems
was studied in [14]. The primary objective in [14] was to
minimize system makespan, i.e., the total time required to
complete all tasks sent for mapping. This objective is very
different from the primary objective in our work: complete
rasterizing every sheetside in a given job before the sheet-

side’s deadline. Our MRCT heuristic attempts to map each
sheetside to its estimated minimum RIP completion time
workstation, which is analogous to the MCT heuristic of
[14] attempting to map each task to its minimum completion
time machine. However, the method of computing a comple-
tion time in [14] does not take into account the impacts of
buffering tasks, communication links, etc. Furthermore, that
study assumes no deviation of the actual time to compute
a task from its estimated time to compute (ETC) value,
i.e., the performance predicted by a resource allocation
heuristic is assumed to match the actual performance. In our
MRCT approach, RIP completion time estimates for a task
are continuously updated with the most current information
regarding actual task completion times.
In [10], a number of resource allocation heuristics for

a class of independent tasks were tested on a homoge-
neous cluster of eight DEC Alpha workstations running
Digital Unix. The set of presented heuristics includes the
following five: round-robin; round-robin with clustering;
minimal adaptive; continual adaptive; and first-come first-
served. None of these heuristics built a prediction model.

VIII. CONCLUSION
The goal of this research was to rasterize dynamically

arriving sheetsides (i.e., execute tasks) before a deadline to
prevent an interruption of service. We presented a mathemat-
ical model of the distributed system operating in a dynamic
environment where task execution times are uncertain. The
mathematical model was used in the design of a resource
management heuristic that clearly outperformed two com-
monly used approaches.

REFERENCES
[1] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring

the robustness of a resource allocation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 15, no. 7, pp. 630–641, Jul.
2004.

[2] I. Banicescu and V. Velusamy, “Performance of scheduling scientific
applications with adaptive weighted factoring,” in Proceedings of the
10th IEEE Heterogeneous Computing Workshop (HCW 2001), 15th

International Parallel and Distributed Processing Symposium (IPDPS
2001), Apr. 2001.

[3] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and
D. Tweten, “Portable batch system: External reference specification,”
NASA, Ames Research Center, Moffet Field, CA, Tech. Rep., 1996.

[4] E. G. Coffman, Ed., Computer and Job-Shop Scheduling Theory.
New York, NY: John Wiley & Sons, 1976.

[5] D. Fernandez-Baca, “Allocating modules to processors in a dis-
tributed system,” IEEE Transactions on Software Engineering,
vol. 15, no. 11, pp. 1427–1436, Nov. 1989.

[6] I. Foster and C. Kesselman, Eds., The Grid 2: Blueprint for a New
Computing Infrastructure. San Francisco, CA: Morgan Kaufmann,
1999.

[7] A. Ghafoor and J. Yang, “A distributed heterogeneous supercomput-
ing management system,” IEEE Computer, vol. 26, no. 6, pp. 78–86,
Jun. 1993.

[8] N. Gharachorloo, S. Gupta, R. F. Sproull, and I. E. Sutherland, “A
characterization of ten rasterization techniques,” in SIGGRAPH ’89:
Proceedings of the 16th Annual Conference on Computer Graphics
and Interactive Techniques. New York, NY, USA: ACM Press, 1989,
pp. 355–368.

[9] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, Apr. 1977.

[10] H. A. James, K. A. Hawik, and P. D. Coddington, “Scheduling
independent tasks on metacomputing systems,” in Proceedings of the
12th International Conference on Parallel and Distributed Comput-
ing Systems (PDCS 99), Aug. 1999, pp. 47–52.

[11] D. L. Janovy, J. Smith, H. J. Siegel, and A. A. Maciejewski, “Models
and heuristics for robust resource allocation in parallel and distributed
computing systems,” in Proceedings of the 21st International Paral-
lel and Distributed Processing Symposium (IPDPS 2007), Mar. 2007.

[12] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous
distributed computing systems,” IEEE Concurrency, vol. 6, no. 3, pp.
42–51, Jul. 1998.

[13] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping
algorithms for a distributed heterogeneous computing environment,”
in Proceedings of the 4th IEEE Heterogeneous Computing Workshop
(HCW ’95), Apr. 1995, pp. 30–34.

[14] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto hetero-
geneous computing systems,” Journal of Parallel and Distributed
Computing, vol. 59, no. 2, pp. 107–121, Nov. 1999.

[15] A. M. Mehta, J. Smith, H. J. Siegel, A. A. Maciejewski, A. Jayasee-
lan, and B. Ye, “Dynamic resource allocation heuristics that manage
tradeoff between makespan and robustness,” Journal of Supercom-
puting, Special Issue on Grid Technology, accepted, to appear.

[16] (2007) Opnet technologies, inc. Accessed Feb. 20, 2007. [Online].
Available: http://www.opnet.com/

[17] V. Shestak, J. Smith, H. J. Siegel, and A. A. Maciejewski, “Iterative
algorithms for stochastically robust static resource allocation in
periodic sensor driven clusters,” in Proceedings of the 18th IASTED
International Conference on Parallel and Distributed Computing and
Systems (PDCS 2006), Nov. 2006, pp. 166–174.

[18] ——, “A stochastic approach to measuring the robustness of resource
allocations in distributed systems,” in Proceedings of the 2006
International Conference on Patallel Processing (ICPP 2006), Aug.
2006, pp. 6–12.

[19] V. Shestak, J. Smith, R. Umland, J. Hale, P. Moranville, A. A.
Maciejewski, and H. J. Siegel, “Greedy approaches to static stochastic
robust resource allocation for periodic sensor driven systems,” in
Proceedings of The 2006 International Conference on Parallel and
Distributed Processing Techniques and Applications, vol. 1, Jun.
2006, pp. 3–9.

[20] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous
task graphs using genetic algorithms,” in Proceedings of the 5th IEEE
Heterogeneous Computing Workshop (HCW ’96), 1996, pp. 86–97.

[21] J. Smith, L. D. Briceño, A. A. Maciejewski, and H. J. Siegel,
“Measuring the robustness of resource allocations in a stochastic
dynamic environment,” in Proceedings of the 21st International
Parallel and Distributed Processing Symposium (IPDPS 2007), Mar.
2007.

[22] X. Tang and S. T. Chanson, “Optimizing static job scheduling
in a network of heterogeneous computers,” in Proceedings of the
International Conference on Parallel Processing 2000 (ICPP’00),
Aug. 2000, p. 373.

[23] M. Wu and W. Shu, “Segmented min-min: A static mapping algorithm
for meta-tasks on heterogeneous computing systems,” in Proceedings
of the 9th IEEE Heterogeneous Computing Workshop, Mar. 2000, pp.
375–385.

[24] D. Xu, K. Nahrstedt, and D. Wichadakul, “Qos and contention-aware
multi-resource reservation,” Cluster Computing, vol. 4, no. 2, pp. 95–
107, Apr. 2001.

