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Abstract This research investigates the prob-

lem of robust static resource allocation for dis-

tributed computing systems operating under im-

posed Quality of Service (QoS) constraints. Of-

ten, such systems are expected to function in an

environment where uncertainties in system pa-

rameters is common. In such an environment,

the amount of processing required to complete

a task may fluctuate substantially. Determin-

ing a resource allocation that accounts for this

uncertainty—in a way that can provide a proba-

bility that a given level of QoS is achieved—is an

important area of research. We present two tech-

niques for maximizing the probability that a given

level of QoS is achieved. The performance results

for our techniques are presented for a simulated

environment that models a heterogeneous cluster-

based radar data processing center.
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1 Introduction

This paper investigates robust resource allocation
for a large class of heterogeneous cluster (HC) sys-
tems that operate on periodically updated sensor
data sets. Sensors (e.g., radar systems, sonar) in
this environment periodically produce new data
sets at a fixed period Λ (see Fig. 1. Because these
sensors typically monitor the physical world, the
characteristics of the data sets vary in a manner
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CNS-0615170 and by the Colorado State University George
T. Abell Endowment.

that impacts the execution times of the applica-
tions that must process them. Suppose that the
HC system that processes these periodic data sets
is composed of M compute nodes and that a col-
lection of N independent applications must pro-
cess each data set before the next data set arrives.
Thus, the allocation of compute nodes to applica-
tions in this environment can be considered to be
static, i.e., all of the applications that are to be
executed are known in advance and are immedi-
ately available for execution. Because this is a het-
erogeneous computing system, the execution times
for each of the N independent applications differs
across the M compute nodes. Resource allocation
in such computing environments has been shown
in general to be an NP-hard problem (e.g., [8,11]).
Thus, designing techniques for resource manage-
ment in such environments is an active area of re-
search (e.g., [1, 5, 6, 10,15]).

In this environment, a new data set arrives ev-
ery Λ time units. Thus, the completion time of the
last to finish application must be less than or equal
to Λ to ensure that the system is ready to begin
processing the next data set upon its arrival. How-
ever, unpredictable variance in the characteristics
of the input data sets may result in a significant
change in the execution times of the applications
that must process the data. This variance may
cause the makespan of the resource allocation to ex-
ceed Λ, which is unacceptable in this environment.
This complicates the process of resource allocation
(i.e., assignment of applications to compute nodes).
Robust design for such systems involves determin-
ing a resource allocation that can account for un-
certainty in application execution times in a way
that enables a probabilistic guarantee that all of
the applications will complete within Λ time units.
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Figure 1: Major functional units and data flow for a class of systems that must periodically process data
sets from a collection of sensors.

The major contribution of this paper is the de-
sign of resource allocation techniques that maxi-
mize the robustness of resource allocations subject
to a constraint on the maximum allowable Λ. The
notion of stochastic robustness was established in
[17] based on a mathematical model of HC systems.
That research presented three greedy approaches to
resource allocation and three more sophisticated it-
erative algorithms. The emphasis of that research
was on minimizing Λ subject to a constraint on the
robustness of the resulting resource allocation. In
this paper, we present two techniques for directly
maximizing the robustness of a resource allocation
subject to a constraint on the time interval required
to process the N applications, i.e., Λ.

The remainder of this work is organized in the
following manner. A brief introduction to the
stochastic robustness framework is presented in
Section 2 along with a brief introduction to using
the stochastic robustness metric in a heuristic. Two
iterative algorithms designed for this environment
and one sample greedy heuristic are described in
Section 3. The parameters of the simulation used
to evaluate the heuristics are discussed in Section 4
along with the simulation results and a performance
evaluation of the presented heuristics in Section 5.
A sampling of relevant related work is presented in
Section 6. Section 7 concludes the paper.

2 Stochastic Robustness

In this environment, we are concerned with allocat-
ing a set of N independent applications to M het-
erogeneous compute nodes so that the robustness of
the resulting resource allocation is maximized sub-
ject to a constraint on the overall makespan (i.e.,
the completion time of the last to finish compute
node). A robustness metric for this environment
can be derived using the FePIA procedure first pre-

sented in [2].
For this system, the performance feature of in-

terest is system makespan, denoted ψ. A resource
allocation can be considered robust if the actual fin-
ishing time of each compute node is less than or
equal to the periodicity of the data set arrivals Λ,
i.e., ψ ≤ Λ.

Uncertainty in this system arises because the ex-
act execution time for each application is not known
in advance of its execution. We can model the ex-
ecution time of each application i (1 ≤ i ≤ N) on
each compute node j (1 ≤ j ≤ M) as a random
variable [20], denoted ηij . We assume that proba-
bility mass functions (pmfs) exist and are available
that describe the possible execution times for each
ηij .

The finishing time of each compute node in this
environment is calculated as the sum of the exe-
cution time random variables for each application
assigned to that compute node [17]. Let nj be the
number of applications assigned to compute node
j. The finishing time of compute node j, referred
to as a local performance characteristic ψj , can be
expressed as follows:

ψj =

nj
∑

i=1

ηij . (1)

Thus, the system makespan can be expressed in
terms of the local performance characteristics as
follows:

ψ = max {ψ1, · · · ,ψM} . (2)

Because of its functional dependence on the execu-
tion time random variables, the system makespan
is itself a random variable. That is, the uncertainty
in application execution times can have a direct im-
pact on the performance metric of the system.

To determine exactly how robust the system is
under a specific resource allocation, we conduct an
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analysis of the impact of uncertainty in system pa-
rameters on our chosen performance metric. The
stochastic robustness metric, denoted θ is defined
as the probability that the performance character-
istic of the system is less than or equal to Λ, i.e.,
θ = P[ψ ≤ Λ]. For a given resource allocation, the
stochastic robustness metric measures the proba-
bility that the generated system performance will
satisfy our robustness requirement. Clearly, unity
is the most desirable stochastic robustness metric
value, i.e., there is a zero probability that the sys-
tem will violate the established robustness require-
ment.

Because there are no inter-task data transfers
among the applications to be assigned, the ran-
dom variables for the local performance character-
istics (ψ1,ψ2, · · · ,ψM ) are mutually independent.
As such, the stochastic robustness metric for a re-
source allocation can be found as the product of
the probability that each local performance feature
is less than or equal to Λ. Mathematically, this is
given as:

θ =
∏

∀j

(

P
[

ψj ≤ Λ
]

)

. (3)

If the execution times ηij for the applications as-
signed to compute node j are mutually indepen-
dent, then the summation of Eq. 1 can be com-
puted using an (nj −1)-fold convolution of the cor-
responding pmfs [13,17].

Intuitively, the stochastic robustness of a re-
source allocation defines the probability that all of
the applications will complete within the allotted
time period Λ. In this research, we are provided
a constraint on the maximum time period required
to process all applications and would like to maxi-
mize the probability that all of the applications will
complete by this deadline.

3 Heuristics

3.1 Two-Phase Greedy

The Two-Phase Greedy heuristic is based on the
principles of the Min-Min algorithm (first presented
in [11], and shown to perform well in many environ-
ments, e.g., [6,16]). The heuristic requires N itera-
tions to complete, resolving a single application to
compute node assignment during each iteration.

The performance objective for our implementa-
tion was chosen to be the minimization of the sys-
tem makespan subject to θ = 0.8. In the first phase
of each iteration, the heuristic determines the appli-
cation to compute node assignment that minimizes

the expected completion time for each of the ap-
plications left unmapped. In the second phase, the
heuristic selects the application to compute node
assignment from the first phase that increases the
expected makespan the least.

An application of the Min-Min algorithm that di-
rectly maximizes robustness in this environment is
ineffective because early in an allocation many of
the applications have yet to be assigned. Thus,
many of the competing application to compute
node assignments will have identical robustness val-
ues, e.g., often unity.

3.2 Genetic Algorithm

The adopted genetic algorithm (GA) was motivated
by the Genitor evolutionary heuristic first intro-
duced in [21]. Our GA implementation models a
complete resource allocation as a sequence of num-
bers, referred to as a chromosome, where the ith

entry in the sequence corresponds to the compute
node assignment for the ith application, denoted
ai

1. The fitness of each chromosome is determined
according to the robustness of the underlying re-
source allocation. That is, a higher robustness
value θ indicates a more fit chromosome.

In our implementation, the 100 most fit chromo-
somes encountered, referred to as the population,
are retained from each iteration for use in the next
iteration. The initial members of the population
were generated by applying the simple greedy sort-
ing heuristic from [17], where the ordering of appli-
cation assignments is chosen randomly.

Our GA operates in a steady state manner, i.e.,
for each iteration of the GA only a single pair of
chromosomes is selected from the population for
crossover. Chromosome selection is performed us-
ing a linear bias function [21], where the rank of
each chromosome is determined by its fitness. Each
new chromosome generated is inserted into the pop-
ulation in sorted order according to its fitness value.
For each chromosome inserted, the least fit chromo-
some in the population is removed, and the size of
the population is held fixed. In an effort to main-
tain a diverse population, the insertion process pre-
vents duplicate chromosomes from being inserted
into the population.

The crossover operator was implemented using
the two-point reduced surrogate procedure [21]. In
two-point reduced surrogate crossover, the parent
chromosomes are compared to identify the chromo-
some entries that differ between them. Crossover

1The ordering of tasks in a chromosome is not significant
for this environment and can be considered arbitrary.
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points are selected such that at least one element
of the parent chromosomes differs between the se-
lected crossover points to guarantee offspring that
are not clones of their parents. Following crossover,
a local search procedure, conceptually analogous to
the steepest descent technique [7], is applied to each
of the produced offspring prior to their insertion
into the population.

The local search implemented in our GA is sim-
ilar to the coarse refinement presented as part of
the GIM heuristic in [19]. Local search relies on a
simple four-step procedure to maximize θ relative
to a fixed Λ value. First, for a given resource allo-
cation, the compute node with the lowest individ-
ual probability to meet Λ is identified. From the
applications assigned to this compute node, local
search identifies the application that, if moved to a
different machine, would increase the overall θ the
most. This requires re-evaluating θ every time an
application-compute node re-assignment is consid-
ered. Once an application-compute node pair has
been identified, the chosen application is moved to
its chosen compute node. Finally, the procedure
repeats from the first step until there are no appli-
cation moves from the lowest probability compute
node that would improve θ. For this procedure, it
is assumed that θ < 1; otherwise, no improvements
can be made through local search.

The final step within each iteration of our GA
implementation applies a mutation operator. For
each iteration of the GA, the mutation operator
is applied to a small percentage of the population.
In our implementation, we selected chromosomes
from the population with a rate of 0.1, i.e., during
each iteration we selected 10% of the population
for mutation. During mutation, each application
assignment of the chromosome to be mutated is in-
dividually modified with a probability referred to
as the mutation rate. For the simulated environ-
ment, the best results were achieved using a mu-
tation rate of 0.02. Once an application-compute
node assignment has been selected for mutation,
the mutation operator randomly selects a different
compute node assignment for the chosen applica-
tion and local search is applied to the result prior
to its insertion into the population.

We chose to limit the number of chromosome
evaluations in our GA implementation to 4,000,000.
For the simulation trials tested, this number of
chromosome evaluations enabled the GA to find a
resource allocation that provided a near unity ro-
bustness value.

3.3 Simulated Annealing

The Simulated Annealing (SA) algorithm—also
known in the literature as Monte Carlo annealing
or probabilistic hill-climbing [16]—is based on an
analogy taken from thermodynamics. In SA, a ran-
domly generated solution, structured as the chro-
mosome from our GA, is iteratively modified and
refined. Thus, SA in general can be considered as
an iterative technique that operates with one pos-
sible solution (i.e., resource allocation) at a time.

To deviate from the current solution in an at-
tempt to find a better one, SA repetitively applies
the mutation operation in the same manner as in
the GA, including the local search procedure. Once
a new solution, denoted as Snew, is produced, a
decision regarding the replacement of the previous
solution, denoted Sold, with the new one has to
be made. If the fitness of the new solution, de-
noted θ(Snew), found after evaluation, is higher
than the old solution, the new solution replaces
the old one. Otherwise, SA will probabilistically
allow poorer solutions to be accepted during the
search process, which makes this algorithm differ-
ent from other strict hill-climbing algorithms [16].
The probability of replacement is based on a system
temperature, denoted T, that decreases with each
iteration. As the system temperature “cools down,”
it becomes more difficult for poorer solutions to be
accepted. Specifically, the SA algorithm selects a
random number from the range [0, 1) according to
a uniform distribution. If

random[0, 1) >
1

1 + exp(
θ(Snew)−θ(Sold)

T
)

(4)

the new poorer resource allocation is accepted; oth-
erwise, the old solution is kept. As can easily be
seen in Eq. 4, the probability for a new solution of
similar quality to be accepted is close to 50%. In
contrast, the probability that a poorer solution is
rejected is rather high, especially when the system
temperature becomes relatively small.

After each mutation (described in Subsection
3.2), the system temperature T is reduced to 99%
of its current value. This percentage, defined as
the cooling rate, was determined experimentally by
varying the rate in the range [0.9, 1). The fitness
of each chromosome, θ, is inherently bound to the
interval [0, 1]. Consequently, only small differences
between θ(Snew) and θ(Sold) are possible, causing
Eq. 4 to remain very near 0.5 for large values of
T. Based on our experimentation, we set the initial
system temperature in Eq. 4 was to 0.1.

For the simulation trials tested, our implemen-
tation of SA was terminated after 4,000,000 chro-
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mosome evaluations or a system temperature of
0.0001 was reached. Limiting the overall number of
chromosome evaluations to 4,000,000 enabled a fair
comparison with our GA result. For all simulation
trials run, the system temperature never reached
0.0001, i.e., every trial was limited by the number
of chromosome evaluations available.

4 Simulation Setup

For our simulations, the periodicity of data set ar-
rivals Λ was assumed fixed at 540 time units. The
value for the constraint on Λ was selected to present
a challenging resource allocation problem for our
chosen heuristics (i.e., the resulting θ was neither
1 nor 0) based on the number of applications, the
number of compute nodes, and the execution time
pmfs used for ηij . The goal of the resource alloca-
tion heuristics is to find resource allocations that
have the highest probability to complete all of the
applications within the given period Λ.

To evaluate the performance of the heuristics de-
scribed in Section 3, the following approach was
used to simulate a cluster-based radar system. The
execution time distributions for 28 different types
of possible radar ray processing algorithms on eight
(M = 8) heterogeneous compute nodes were gener-
ated by combining experimental data with bench-
mark results. The experimental data, represented
by two execution time sample pmfs, were obtained
from experiments conducted on the Colorado MA1
radar [12]. These sample pmfs contain applica-
tion execution times for 500 different radar data
sets of varying complexity by the Pulse-Pair &
Attenuation Correction algorithm [4] and by the
Random Phase & Attenuation Correction algo-
rithm [4]. Both applications were executed in non-
multitasking mode on the Sun Microsystems Sun
Fire V20z workstation. To simulate the execution
of these applications on a heterogeneous computing
system, each sample pmf was scaled by a perfor-
mance factor corresponding to the performance ra-
tio of a Sun Microsystems Sun Fire V20z to each of
eight selected compute nodes1 based on the results
of the fourteen floating point benchmarks from the
CFP2000 suite [18]. Combining the results avail-
able from the CFP2000 benchmarks with the sam-
ple pmfs produced by the two available applications
provided a means for generating the 28 × 8 matrix
of application execution times, where the kjth ele-

1The eight compute nodes selected to be modeled were:
Altos R510, Dell PowerEdge 7150, Dell PowerEdge 2800, Fu-
jitsu PRIMEPOWER 650, HP Workstation i2000, HP Pro-
Liant ML370 G4, Sun Fire V65x, and Sun Fire X4100.

Figure 2: A comparison of the average robustness
values attained through simulation for the GA, the
SA, and the Two-Phase Greedy heuristics.

ment in the matrix corresponds to the application
execution time pmf of a possible ray processing al-
gorithm of type k on compute node mj .

Each simulation trial consisted of a set of 128 ap-
plications (N = 128) to be assigned to the eight
available heterogeneous computing systems. To
evaluate the performance results of each heuristic,
50 simulation trials were conducted. For each trial,
the type of each application was determined by ran-
domly sampling integers in the range [1, 28].

5 Simulation Results

The results of the simulation trials are presented in
Figure 2. The 50 simulation trials provide a good
estimate of the mean and 95% confidence inter-
val for each of the resource allocation techniques.
Both the GA and SA were able to improve upon
the robustness values achieved by the Two-Phase
Greedy solution. For the 50 conducted trials, the
Two-Phase Greedy heuristic produced an average
robustness value of 67.63%. The SA results showed
a mean robustness value of 94.02%. The GA per-
formed better on average than either of the other
two heuristics with an average robustness value of
98.15%. Figure 2 presents a simple plot of the re-
sults obtained from the 50 simulation trials.

As can be seen from the results, the GA appeared
more capable of maximizing robustness in this en-
vironment given the chosen parameters. Although
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the GA presented a higher mean result than the SA,
the confidence intervals of the two results overlap
and therefore the difference in their performance
is not statistically significant. Both the GA and
SA heuristics significantly outperformed the Two-
Phase Greedy approach. The comparable perfor-
mance of the SA and GA approaches may suggest
that the local search, common to both techniques,
may have a significant impact on their attained re-
sults.

There was a significant difference between the
SA and GA heuristics in terms of their worst-
case completion time performance. The worst-case
completion time performance for a resource allo-
cation corresponds to the largest possible comple-
tion time impulse from the completion time distri-
butions taken across all compute nodes in the al-
location. This value is significant because it also
corresponds to a robustness value of 1, i.e., the re-
source allocation is guaranteed to complete by this
time. For our simulation study, the mean worst
case completion time for the GA was found to be
543.25 time units with a 95% confidence interval
of plus or minus 6.09 time units. The SA mean
worst case completion time was found to be 564.84
time units with a 95% confidence interval of plus or
minus 4.27 time units.

6 Related Work

A universal framework for defining the robustness
of resource allocations in heterogeneous computing
systems was addressed in [2]. This work referred to
the ability of a resource allocation to tolerate uncer-
tainty as the robustness of that resource allocation
and established the FePIA procedure for deriving
a deterministic robustness metric. In [17], the au-
thors used the FePIA procedure to define a robust-
ness metric for static stochastic resource allocation
environments. The research in [17] focused on min-
imizing the makespan of a stochastic resource al-
location subject to a constraint on the robustness
of that allocation. In this current paper, we have
shown that it is possible to instead directly maxi-
mize the robustness of a resource allocation given
a constraint on the allowed makespan.

In [5], the problem of robust resource alloca-
tion was addressed for scheduling Directed Acyclic
Graphs (DAGs) in a heterogeneous computing en-
vironment. In [5], robustness was quantitatively
measured as the “critical” (i.e., the smallest) slack
among all components that comprise a given DAG.
Although the authors focused on designing resource

allocations that maximized robustness, their re-
search was only demonstrated for a deterministic
environment. Our robustness metric is based on
stochastic information about the uncertainties.

Our methodology requires that the uncertainty
in system parameters can be modeled as stochas-
tic variables. A number of methodologies exist for
modeling the stochastic behavior of application ex-
ecution times (e.g., [3, 9, 14]). In [3], a method is
presented for combining stochastic task execution
times to determine task completion time distribu-
tions. Our work leverages this method of combin-
ing independent task execution time distributions
and extends it by defining a means for measuring
the robustness of a resource allocation against an
expressed set of QoS constraints.

In [10], the authors demonstrate the use of a GA
to minimize the expected system makespan of a re-
source allocation in a heterogeneous computing en-
vironment where task execution times are modeled
as random variables. This research demonstrates
the efficacy of a stochastic approach to resource
scheduling, by showing that it can significantly re-
duce system makespan as compared to some well
known scheduling heuristics that are based on a de-
terministic modeling of task execution times. The
heuristics presented in that study were adapted to
the stochastic domain and used to minimize the ex-
pected system makespan given a stochastic model
of task execution times, i.e., the fitness metric in
that approach was based on the first moment of
random variables. The emphasis of our approach
is on quantitatively comparing one resource alloca-
tion to another based on the stochastic robustness
metric, i.e., the probability of satisfying a given
makespan constraint. However, the success of the
authors’ Genetic Algorithm applied to stochastic
resource allocation was a motivating factor for our
selection of a Genetic Algorithm in this study.

7 Conclusions

This research presented two distinct techniques for
directly maximizing the robustness of a resource
allocation. Both the GA and SA techniques were
shown to significantly outperform a simpler Two-
Phase greedy heuristic. A comparison of the three
heuristics revealed the great potential for the GA
and SA algorithms to efficiently manage resources
in distributed heterogeneous systems operating un-
der uncertainty.
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