
A Stochastic Model for Robust Resource Allocation
in Heterogeneous Parallel and Distributed Computing Systems

Jay Smith1,2, Howard Jay Siegel2,3 and Anthony A. Maciejewski2

1DigitalGlobe Colorado State University
Longmont, CO 80503 USA 2Dept. of Electrical and Computer Engineering

Email: jtsmith@digitalglobe.com 3Dept. of Computer Science
Fort Collins, CO 80503-1373 USA
Email: {hj, aam}@engr.colostate.edu

Abstract

This paper summarizes some of our research in the
area of robust static resource allocation for distributed
computing systems operating under imposed Quality of
Service (QoS) constraints. Often, these systems are ex-
pected to function in a physical environment replete with
uncertainty, which causes the amount of processing re-
quired over time to fluctuate substantially. Determining
a resource allocation that accounts for this uncertainty
in a way that can provide a probabilistic guarantee that
a given level of QoS is achieved is an important research
problem. The stochastic robustness metric described in
this research is based on a mathematical model where
the relationship between uncertainty in system parame-
ters and its impact on system performance are described
stochastically.

1 Introduction

In a heterogeneous computing system, task execution
times may differ depending on which computer executes
a given task. Often, task resource requirements lead to
inconsistent performance differences between heteroge-
neous machines. That is, machine 1 being faster than
machine 2 on some task A does not imply that machine
1 is uniformly faster on all tasks. Resource allocation in
such computing environments has been shown in gen-
eral to be an NP-hard problem (e.g., [7]). Thus, the de-
sign of heuristics for resource allocation is an active area
of research, e.g., [1, 4, 5, 6, 9, 11].

This research was supported by the NSF under Grant CNS-
0615170 and by the Colorado State University George T. Abell
Endowment.

Resource allocation decisions are often based on es-
timated values of task and system parameters, whose
actual values are uncertain and may differ from avail-
able estimates. A resource allocation can be considered
“robust” if it can mitigate the impact of uncertainties
in system parameters on a given performance objective
[2]. That is, a robust resource allocation can guaran-
tee a certain level of performance under a wide range of
conditions. Any claim of robustness for a given system
must answer these three questions [3]: (a) What behav-
ior makes the system robust? (b)What are the uncertain-
ties that the system is robust against? (c) Quantitatively,
exactly how robust is the system? These three questions
help establish an intuitive meaning for the robustness of
a system that goes beyond a simple nebulous adjective.
In some environments, there may be information

available regarding the probability of variations in sys-
tem parameters. For example, we may have historical
information regarding past execution times for a given
task that can be used to approximate the probabilities of
all possible execution times. This stochastic information
can be utilized to derive a robustness metric. In this pa-
per, we define a stochastic methodology for quantifying
the ability of a resource allocation to satisfy quality of
service constraints in the midst of uncertainty in system
parameters. System parameters are modeled as random
variables and we assume that stochastic information is
available that characterizes the uncertainty in system pa-
rameters beyond a simple point estimate.
To illustrate the usefulness of stochastic data in re-

source allocation, consider an allocation environment
with two machines (A and B). In the example situation
of Figure 1, some tasks have previously been assigned
to machines A and B. We would like to select a machine
to execute task 3 and we would like task 3 to complete
by the plotted completion time constraint. If we use a



Figure 1. An example system where we are to assign task 3 to either machine A or machine B
and we would like task 3 to complete prior to the plotted completion time constraint. Presented
are the task completion time probability density functions for task 3 on both machine A and
machine B. Using the point estimate, plotted as a dashed line in the figure, machine A appears
to be the better choice. However, accounting for the complete stochastic information describ-
ing all possible completion times, machine B has a lower probability to violate the completion
time constraint and is clearly the better choice.

point estimate for the completion time of task 3, e.g., the
mean of the completion time distributions, then it would
appear that the best decision would be to assign task 3 to
machine A whose point estimate of the completion time
is smaller than the point estimate on machine B. How-
ever, by using the full stochastic information we can see
that although the point estimate of the completion time
distribution for task 3 on machine A is smaller than on
machine B, the tail of the distribution is much smaller
on B than on A. That is, there is a much higher probabil-
ity that task 3 will violate its completion time constraint
on machine A, making machine B the statistically better
choice.
This paper provides a summary of our previously

published results on stochastic robustness [12]. In the
next section, we demonstrate the derivation of a robust-
ness metric for an example static environment. Section
3 illustrates the use of the stochastic robustness metric
through several example applications. We present open
problems in robust resource allocation in Section 4.

2 Deriving a Robustness Metric

The three robustness questions provide the basis for
the more formal FePIA procedure for deriving a quan-
titative measure of robustness [2, 9]. The procedure
uses the following four steps for measuring the im-
pact of uncertainty in estimated system parameters on
a stated performance objective: (1) identify the perfor-
mance features of interest within the system, (2) identify
the source of uncertainty within the system (perturbation

parameters), (3) clarify the impact of the system uncer-
tainty on the performance features of interest, and (4)
analyze the system to quantify robustness.
We illustrate the intuition behind the derivation of a

robustness metric in a static stochastic allocation envi-
ronment, where we are concerned with allocating a set
of T tasks toM heterogeneous machines. In a static en-
vironment, the entire collection of tasks to be allocated
is known in advance, prior to the start of allocation. For
this system, the performance feature of interest is system
makespan (the time required to compute all T tasks), de-
noted ψ. A resource allocation can be considered robust
if the actual finishing time of each machine is less than
or equal to a fixed constant βmax, i.e., ψ ≤ βmax.
Uncertainty in this environment arises because the

exact execution time for each task is unknown. We can
model the execution time of each task i on each machine
j as a random variable [13], denoted ηij .
The finishing time of each machine in a stochastic en-

vironment is calculated as the sum of the execution time
random variables for each task assigned to that machine
[12]. Let nj be the number of tasks assigned to machine
j. The finishing time of machine j, referred to as a lo-
cal performance characteristic ψj , can be expressed as
follows:

ψj =

nj∑

i=1

ηij . (1)

Thus, the system makespan can be expressed in terms of
the local performance characteristics as follows:

ψ = max {ψ1, · · · , ψM} . (2)



Because of its functional dependence on the execution
time random variables, the system makespan is itself a
random variable. That is, the uncertainty in task execu-
tion times can have a direct impact on the performance
metric of this system.
Finally, we conduct an analysis to determine exactly

how robust the system is under a specific resource allo-
cation. The stochastic robustness metric, denoted θ, is
defined as the probability that the performance charac-
teristic of the system is less than or equal to βmax, i.e.,
θ = P[ψ ≤ βmax]. For a given resource allocation,
the stochastic robustness metric measures the probabil-
ity that the generated system performance will satisfy
our robustness requirement. Clearly, unity is the most
desirable stochastic robustness metric value, i.e., there
is a zero probability that the system will violate the es-
tablished robustness requirement.
Assuming no inter-task data transfers exist among the

tasks to be assigned, the random variables for the local
performance characteristics (ψ1, ψ2, · · · , ψM ) are mu-
tually independent. As such, the stochastic robustness
metric for a resource allocation can be found as the prod-
uct of the probability that each local performance feature
is less than or equal to βmax. Mathematically, this is
given as,

θ =
∏

∀j

(

P
[

ψj ≤ βmax
]

)

. (3)

If the execution times ηij for tasks assigned to machine j
are mutually independent, then the summation of Equa-
tion 1 can be computed using an (nj − 1)-fold convo-
lution of the corresponding probability mass functions
(pmf) [10, 12].

3 Using Robustness

Two ways of using the static stochastic robustness
metric are apparent by inspecting the parameters of
Equation 3. The two parameters βmax and θ can alter-
nately be either optimized or specified by the user. For
example, the user could specify a βmax value as a con-
straint and employ a heuristic to attempt to maximize
the robustness (θ) of the resulting resource allocation.
That is, in this case, the user is interested in a resource
allocation that has the highest probability to complete
all of the tasks by βmax. Maximizing the robustness of
a resource allocation given a fixed βmax requires mini-
mizing the ψj values, thus, maximizing the probability
that each machine will finish before βmax.
For some systems, it may be unclear how to select

an appropriate βmax value. Thus, we can instead de-
fine a minimum acceptable θ value, denoted ω, and at-
tempt to minimize βmax such that the probability that
all tasks complete by βmax is at least ω. In this section,

we consider the case where the minimum acceptable ro-
bustness value ω is specified by the user and we want
to minimize βmax such that θ ≥ ω. In [12], the period
minimization routine (PMR) was introduced to iterate
through the possible βmax values for a given resource
allocation to find the smallest βmax value, provided by
that allocation, such that θ ≥ ω.
To demonstrate the use of the stochastic robustness

metric in a resource allocation, we present a static
stochastic environment where a set of machines periodi-
cally receive data sets to be processed by a collection of
n tasks [12]. Each data set must be processed by all of
the tasks before the next data set arrives. The execution
times for each of the n tasks is assumed to be inherently
data dependent, thus, the exact execution time for each
task is unknown prior to its execution. However, we are
provided a pmf describing the probabilities of task exe-
cution times for each machine.
It is important to note that because this is a static en-

vironment, we are determining the allocation of tasks to
machines in advance of deploying the system, i.e., be-
fore it will be required to process real data. Thus, by op-
timizing the allocation of machines to tasks in advance,
we can reduce βmax and improve the frequency with
which the system can process data sets.
The stochastic robustnessmetric for this system is the

probability that the actual makespan of the system does
not exceed βmax, i.e., θ = P [ψ ≤ βmax]. The goal
of resource allocation heuristics in this environment is
to minimize βmax such that θ is always greater than or
equal to a given fixed probability ω, i.e., θ ≥ ω. Intu-
itively, by specifying a minimum robustness value (ω),
the user is specifying an acceptable probability for the
makespan to be greater than βmax, i.e., 1 − ω.
We can use this formulation of robustness along with

the PMR procedure to design a two-phase greedy heuris-
tic for resource allocation in this system [12]. The two-
phase greedy heuristic first initializes the set of tasks to
be executed to the entire set of tasks that are available.
While there are still tasks to execute, the heuristic uses
two phases to find the next task assignment. In the first
phase, the heuristic determines a machine assignment
for each unassigned task that minimizes βmax (ignoring
all other unassigned tasks), where we use the PMR pro-
cedure to determine the smallest βmax for each possible
machine assignment for each task such that the robust-
ness constraint (ω) is still satisfied. In the second phase,
the heuristic selects the task machine pair (found in the
first phase) that provides the smallest overall βmax. The
selected task is then allocated to its chosen machine and
removed from the set of tasks to be assigned. The heuris-
tic continues in this way until all tasks have been allo-
cated.
This section presented just two example uses of the



static stochastic robustness metric, many more uses are
possible. The next section considers open problems in
robust resource allocation.

4 Future Work

There are a number of immediate problems to be ad-
dressed in stochastically robust resource allocation. In
a stochastic environment, methods are needed for lever-
aging experiential data to model uncertainty in pertur-
bation parameters [8]. This is important because prior
work in stochastic resource allocation environments has
assumed that these models are available, i.e., in the form
of probability mass functions. Further, once a pmf has
been established for a perturbation parameter, methods
are needed for updating the existing pmf with new ex-
periential data. Updating pmfs with the most current
information is important in a dynamic environment be-
cause it enables the model to track changes in perturba-
tion parameter distributions over time. In addition, pmfs
based on experiential data may provide only an approxi-
mation of the true distribution of perturbation parameter
values and methods are needed for determining the im-
pact of estimation error in pmfs on robustness calcula-
tions. That is, how to make resource allocation decisions
robust with respect to estimation errors in perturbation
parameter pmfs is an open problem.
Many heterogeneous computing environments have

inherent quality of service constraints that must be met
during resource allocation. Determining such resource
allocations is an active area of research. We have briefly
shown an example environment with quality of service
constraints and demonstrated how to apply the robust-
ness methodology to determine resource allocations that
meet those constraints. In addition to this example, other
quality of service requirements might involve multiple
robustness requirements, e.g., minimum bandwidth re-
quirements, guaranteed processor time for certain users,
or real-time response capabilities.
Our current research in robust resource allocation, is

also investigating combining multiple types of pertur-
bation parameters into a single robustness metric, e.g.,
combining machine failure probabilities and task execu-
tion time uncertainty into a single metric. Combining
multiple perturbation parameters into a single measure
of robustness will extend the applicability of robust re-
source allocation into problem domains where these un-
certainties occur simultaneously.
In a stochastic environment, resource allocation de-

cisions may depend on combining perturbation param-
eter pmfs. For example, pmfs for perturbation parame-
ters can be used to produce an overall metric for the ro-
bustness of a resource allocation. In a dynamic environ-
ment, where resource allocation decisions must be made

quickly, it is important to identify new fast methods for
combining perturbation parameter distributions to pro-
duce a robustness value during resource allocation. If
heuristics can quickly combine perturbation parameter
distributions, then we can determine methods for using
the stochastic robustness metric to guide resource allo-
cation decisions during execution.

5 Summary

Robust resource allocation is an important research
area within heterogeneous parallel and distributed com-
puting systems. The three robustness questions are fun-
damental to the understanding of robustness in any sys-
tem: (1) What behavior makes the system robust? (2)
What uncertainties must the system be robust against?
(3) Quantitatively, exactly how robust is the system?
These three core questions led to the development of the
FePIA procedure for deriving a robustness metric. In
this paper, we presented our application of the FePIA
procedure to a static stochastic environment to a de-
rive robustness metrics. In addition to demonstrating the
derivation of a robustness metric, we have also demon-
strated two ways to incorporate a robustness metric into
resource allocation heuristics.

References

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski,
N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao. Characterizing
Resource Allocation Heuristics for Heterogeneous Com-
puting Systems, volume 63 of Advances in Computers,
pages 91–128. Elsevier, Amsterdam, The Netherlands,
2005.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K.
Kim. Measuring the robustness of a resource allocation.
IEEE Transactions on Parallel and Distributed Systems,
15(7):630–641, July 2004.

[3] S. Ali, H. J. Siegel, and A. A. Maciejewski. The ro-
bustness of a resource allocation in parallel and dis-
tributed computing systems. In Proceedings of the joint
meeting of ISPDC 2004: Third International Symposium
on Parallel and Distributed Computing, and HeteroPar
‘04: Third International Workshop on Algorithms, Mod-
els and Tools for Parallel Computing on Heterogeneous
Networks, pages 2–10, July 2004.

[4] L. Bölöni and D. Marinescu. Robust scheduling of
metaprograms. Journal of Scheduling, 5(5):395–412,
Sept. 2002.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F. Fre-
und, D. Hensgen, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao. A comparison
of eleven static heuristics for mapping a class of inde-
pendent tasks onto heterogeneous distributed computing



systems. Journal of Parallel and Distributed Computing,
61(6):810–837, June 2001.

[6] A. Dogan and F. Özgüner. Genetic algorithm based
scheduling of meta-tasks with stochastic execution times
in heterogeneous computing systems. Cluster Comput-
ing, 7(2):177–190, Apr. 2004.

[7] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on non-identical proces-
sors. Journal of the ACM, 24(2):280–289, Apr. 1977.

[8] M. A. Iverson, F. Özgüner, and L. Potter. Statistical pre-
diction of task execution times through analytical bench-
marking for scheduling in a heterogeneous environment.
IEEE Transactions on Computers, 48(12):1374–1379,
Dec. 1999.

[9] D. L. Janovy, J. Smith, H. J. Siegel, and A. A. Ma-
ciejewski. Models and heuristics for robust resource al-
location in parallel and distributed computing systems.
In Proceedings of the 21

st International Parallel and
Distributed Processing Symposium (IPDPS 2007), Mar.
2007.

[10] A. Leon-Garcia. Probability & Random Processes for
Electrical Engineering. Addison Wesley, Reading, MA,
1989.

[11] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund. Dynamic mapping of a class of indepen-
dent tasks onto heterogeneous computing systems. Jour-
nal of Parallel and Distributed Computing, 59(2):107–
121, Nov. 1999.

[12] V. Shestak, J. Smith, A. A. Maciejewski, and H. J.
Siegel. Stochastic robustness metric and its use for static
resource allocations. Journal of Parallel and Distributed
Computing, accepted to appear, 2008.

[13] L. Wasserman. All of Statistics: A Concise Course in
Statistical Inference. Springer Science+Business Media,
New York, NY, 2005.


