
ROBUST RESOURCE ALLOCATION
IN HETEROGENEOUS PARALLEL
AND DISTRIBUTED COMPUTING SYSTEMS

INTRODUCTION

In parallel and distributed computing, multiple computers
are collectivelyused toprocess a set of tasks simultaneously
to improve performance over that of a single processor (1).
Often, such computing systems are constructed from a
heterogeneousmixture ofmachines thatmay differ in their
capabilities (e.g., available memory, number of floating
point units, clock speed, and operating system). In a het-
erogeneous computing system, the execution time of a task
may differ depending onwhich computer executes the task.
Often, task resource requirements lead to inconsistent

ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS 2461

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.

performance differences betweenheterogeneousmachines.
That is, machine 1 being faster than machine 2 on some
taskA does not imply that machine 1 is uniformly faster on
all tasks.

Resource allocation in heterogeneous parallel and dis-
tributed computing is the process of assigning tasks to
computers for execution such that some performance objec-
tive is optimized. For example, a common objective in
resource allocation is to minimize the total time required
to complete a set of tasks to be executed. It has been shown
that resource allocation is an NP-hard problem (2) (i.e., an
optimal solution cannot be found in reasonable time for
problems of realistic size). Therefore, the task of resource
allocation is often addressed heuristically. A resource allo-
cation heuristic generates tasks to machine assignments
that attempt to optimize the identified performance objec-
tive. The design of heuristics for resource allocation is an
active area of research (3, 4). In this article,wewill evaluate
the robustness of resource allocations in both static and
dynamic environments. In a static environment, the entire
collection of tasks to be allocated is known in advance, prior
to the start of allocation. In contrast, in a dynamic envir-
onment, the set of tasks to be executed is not known
in advance and tasks are assigned as they arrive to the
system.

Resource allocation decisions are often based on esti-
mated values of task and system parameters, whose actual
values are uncertain and may differ from available esti-
mates. A resource allocation can be considered ‘‘robust’’ if it
can mitigate the impact of uncertainties in system para-
meters on a given performance objective (5). That is, a
robust resource allocation can guarantee a certain level
of performance under a wide range of conditions. Any claim
of robustness for a given system must answer these three
questions (6): (1) What behavior makes the system robust?
(2) What are the uncertainties that the system is robust
against? (3) Quantitatively, exactly how robust is the sys-
tem? These three questions help establish an intuitive
meaning for the robustness of a system that goes beyond
a simple nebulous adjective.

In the next section, we describe the formal FePIA
procedure for deriving a robustness metric for any given
system. Then we provide an example robustness metric
derivation for environments where uncertainties are
caused by system parameters whose values are only esti-
mates. We use the steps of the FePIA procedure to define a
model of robustness in a stochastic environment where
uncertainties are modeled as random variables. We con-
clude with a brief discussion of the open problems in robust
resource allocation.

DETERMINING A ROBUSTNESS METRIC

The three robustness questions provide the basis for the
more formal FePIA procedure for deriving a quantitative
measure of robustness (5). Theprocedureuses the following
four steps for measuring the impact of uncertainty in
estimated system parameters on a stated performance
objective: (1) identify the performance features of interest
within the system, (2) identify the source of uncertainty

within the system (perturbation parameters), (3) clarify the
impact of the system uncertainty on the performance fea-
tures of interest, and (4) analyze the system to quantify
robustness.

To illustrate the intuition behind the steps of the FePIA
procedure, wewill use the following simple resource alloca-
tion example throughout our discussion. In this example, a
set of tasks is to be assigned to a heterogeneous collection of
machines such that the finishing time of the last to finish
machine (i.e., the total time required to complete all of the
tasks, often referred to as makespan), is minimized. An
estimate of the execution time of each task on eachmachine
is available, and the resource allocation must take into
account that there are unknown errors in these estimates
(e.g., their actual values may be data dependent). The
following summary outlines the four steps of the FePIA
procedure, which was first presented in Ref. 5.

Step 1: Describe quantitatively the requirement that
makes the system robust. This step provides a more
precise formulation of the first of our intuitive robust-
ness questions (question (1) in the previous section).
Based on this robustness requirement, we identify the
performance features of the system that determine
whether the robustness requirement is met. Establish-
ing the acceptable variation in performance features
requires that we define the limits on these features
that allow us to maintain an acceptable level of perfor-
mance. For example, the acceptable variation in make-
span for our sample system may be to limit the actual
makespan to some constant value t. That is, the actual
finish time of the last-to-finish machine should be less
than or equal to t.

Step2: Identify the uncertainties in systemparameters
whose values may impact the performance features
that are to be limited in variation (question (2) in the
previous section). The uncertainties in estimated system
parameter values are referred to as the perturbation
parameters of the system. We are interested in the per-
turbation parameters that may cause a variation in the
performance features of interest (i.e., those identified in
Step 1 as part of the robustness requirement). For our
makespan example, the performance metric is based on
estimates of task execution times, and these estimates
may contain unknown errors that could impact system
performance. That is, the uncertainty in task execution
times are relevant because changes in these values may
directly impact themakespanof the system.Thus,weare
interested in the robustness of the estimated makespan
relative to unknown errors in task execution time esti-
mates.

Step 3: Identify the impact of perturbation parameters
(identified in Step 2) on the performance features of the
system (identified in Step 1). With respect to our robust-
ness requirement from Step 1, the actual value of our
performance featuremust bewithin the identified accep-
table level of variation. For the makespan example, the
sumof theactual execution times for all tasks assigned to
any given machine determines the actual finishing time
of that machine. Thus, the actual finishing time of the

2462 ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS

last-to-finishmachine (i.e., theactualmakespan)mustbe
less than or equal to t. Differences between the estimated
task execution times and their actual values will directly
impact the ability of the system to meet the robustness
requirement established in Step 1.

Step 4: The last step is to conduct an analysis to deter-
mine the smallest collective change in the assumed
values of the perturbation parameters of Step 2 that
would cause any of the performance features of Step 1 to
violate their robustness requirements. The value pro-
duced by this analysis will provide the degree of robust-
ness for the system (addressing question (3) of the
previous section). For the makespan example, this is a
quantification of the smallest collective increase in task
execution times that would lead to the actual makespan
being greater than t.

DETERMINISTIC MODELS OF ROBUSTNESS

Introduction

In this section, we provide two example derivations of a
robustness metric, one in a static environment and one in a
dynamic environment. For both environments, we present
an example heuristic that uses the derived robustness
metric for that environment during resource allocation to
facilitate the creation of robust resource allocations.

Example Static Environment

Deriving a RobustnessMetric. In this environment, simi-
lar to the makespan example of the previous section, the
goal of the resource allocation is to assign T tasks to
M machines such that the robustness of the system is
maximized (7). Because this is a static environment, the
T tasks to be assigned are all known in advance. Further-
more, we assume that the estimated time to compute
(ETC) each task on each machine has been provided
[determined by experimental or analytical techniques
(8)]. We also assume that the M machines are heteroge-
neous (i.e., each ETC value for a given task on the
M machines may be different). Using the FePIA proce-
dure, we can quantitatively define a measure of robust-
ness for this example system as follows (Table 1 provides a
reference for the terms defined in this section).

Step 1: We first describe the robustness requirement.
For this system, we require that the actual finishing
time of each machine be less than or equal to a fixed
constant t.

Step 2:Uncertainty in this system originates because of
unknown inaccuracies in the estimates of task execution
times, which can lead directly to increases in machine
finishing times thatmay violate our robustness require-
ment. For our example system, unknown inaccuracies in
the ETC values are expected (e.g., the actual execution
time of a task may be data dependent). Thus, the per-
turbation parameters for our system are these inaccura-
cies, and we require that resource allocations in this
environment be robust to these inaccuracies.

Step 3: To understand the impact that uncertainties in
ETC times canhave onmachinefinishing times,weneed
to define amodel for calculatingmachine finishing times
in this system. For a given resource allocation m; let Cest

be the vector of estimated execution times for theT tasks
to be executed, and let C be the corresponding vector of
actual execution times for the tasks (i.e., Cest plus the
estimation error for each execution time). The finishing
time for eachmachine j (1 ! j ! M) is determined based
on the execution times for tasks assigned to that
machine under a specified resource allocation m. Given
Cest, we can denote the estimated finishing time of
machine j under resource allocation m; as FjðCest;mÞ.
Let T j be the subset of tasks in T assigned to machine j
under resource allocation m. We can calculate the
estimated finishing time of each machine j as
the sum of the task execution times for all tasks in
T j. The set of performance features of interest for
the system, denoted !, are the set of actual finishing
times for the machines given our resource allocation m
(i.e.,! ¼ fFjðC;mÞ1 ! j ! Mg). Therefore, the unknown
errors in our ETC estimates will directly impact the
performance features of interest within this system.

Step 4: Finally, we conduct an analysis to determine
exactly how robust the system is under a specific
resource allocation. The robustness radius of a perfor-
mance feature, denoted rmðFjðCest ;mÞ;CÞ, is defined as the
smallest collective increase in system parameters that
would lead to a violation of the robustness requirement
for that performance feature. That is, for a given
machine j, we would like to know the smallest collective
increase in the execution times of tasks assigned to that
machine that would result in FjðC;mÞ> t. Quantita-
tively, if the Euclidean distance between the vector of
actual computation times and the vector of estimated
computation times for tasks assigned to machine j is no
larger than rmðFjðCest;mÞ;CÞ, then the finishing time of
machine j will be less than the makespan constraint t.
Because the finishing time of amachine is the sum of the
execution times of all tasksassigned to thatmachine, the
makespan constraint can be represented as a hyper-
plane in a multidimensional space whose axes are
defined for each machine in terms of the tasks assigned
it. That is, each perturbation parameter provides a
single dimension along which the robustness radius

Table 1. Table of Term Definitions

T tasks to be assigned
M total number of heterogeneous machines
ETC matrix of estimated task execution times
t resource allocation finishing time constraint
m resource allocation
Cest vector of estimated task execution times
C vector of actual task execution times
FjðCest;mÞ estimated finishing time of machine j
rmðFjðCest;mÞ;CÞ robustness radius of machine j
! performance features
rmð!;CÞ robustness metric
T j subset of tasks assigned to machine j

ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS 2463

can vary. For example, in Fig. 1, the two tasks c1 and c2
have been assigned tomachine j and provide the axes for
this geometric analysis. The radius rmðFjðCest;mÞ;CÞ,
interpreted geometrically, is the shortest distance
from Cest to the hyperplane given by FjðCest;mÞ ¼ t.
Thus, as long as the estimation error contained in Cest

does not exceed rmðFjðCest;mÞÞ, then the finishing time of
machine j will not exceed t. In Fig. 1, the robustness
requirement is plotted as a solid gray line—highlighting
the boundary between robust performance and nonro-
bust performance. The estimated execution times of c1
and c2 are plotted together in the figure as the estimated
value of the perturbation parameters. Figure 1 demon-
strates the robustness radius for this example as the
shortest distance from the point estimate of the pertur-
bation parameters to the hyperplane defined by the
robustness requirement (i.e., a line in two dimensions).
The general calculation of rmðFjðCest;mÞ;CÞ can be
expressed using the point-to-plane distance formula
as follows:

rmðFjðCest;mÞ;CÞ ¼
t%FjðCest;mÞ

ffi
number of tasks assigned to machine j

p

ð1Þ

Finally, the robustnessmetric canbe expressed in terms
of the set of robustness radii, where themetric is equal to
the smallest of the robustness radii for the set of per-
formance features!, denoted rm.Mathematically, this is
expressed as follows,

rmð!;CÞ ¼ min
FjðCest;mÞ !

rmðFjðCest;mÞ;CÞ ð2Þ

As long as the collective increase in execution times for
the set of tasks assigned to a given machine does not
exceed the robustnessmetric value, then the systemwill
continue to meet the robustness requirement.

Using Static Robustness. The robustness metric can be
used directly to compare resource allocations for their
ability to deliver on promised performance, as in Ref. 5.
Alternatively, the robustness metric can be used during
resource allocation to improve the overall robustness of the
resulting allocation. That is, using the robustness metric
from the previous subsection, we can define a resource
allocation heuristic that attempts to maximize the robust-
ness of the resource allocations that it produces. In this
subsection, we give an example resource allocation heur-
istic that attempts to maximize robustness.

The max–max heuristic, presented in Ref. 7, uses a
measure of robustness during allocation to maximize
robustness. Max–max starts with an initial set of tasks
to be assigned to machines within the system. For each
task, we consider what the robustness radius for each
machine would be if that task were assigned to it and select
the machine that provides the largest overall robustness
radius. From this set of task-machine pairs, max–max
selects the task-machine pair that provides the overall
largest robustness radius. The selected task is assigned
to its selectedmachine and removed from the set of tasks to
be assigned; then themachine’s completion time is updated
accordingly. Max–max continues in this way until all tasks
have been assigned to machines in the heterogeneous
system. Note that when evaluating rmðFjðCest;mÞ;CÞ, as
in Eq. (1), during resource allocation we replace the
complete machine finishing time FjðCestÞwith the finishing
time of the machine given the set of tasks that have
previously been assigned to this machine plus the task
under consideration. This value can be thought of as an
intermediate robustness radius determined by the partial
allocation when it is calculated.

This heuristic was evaluated in Ref. 7 alongside several
other resource allocation techniques. By performing
resource allocation in this way, the resulting allocation
can tolerate a larger variation in task execution times
than many commonly used techniques, as demonstrated
in Ref. 7. The paper also demonstrates the utility of this
approach through comparison with some other techniques
for resource allocation.

Example Dynamic Environment

Deriving a Robustness Metric. This subsection focuses
on deriving a robustness metric for a dynamic resource
allocation environment, where the set of tasks to execute
and their arrival times are not known in advance. The set of
tasks to be executed in this environment is assumed to be
taken from a frequently executed collection of tasks, as is
common in many environments. Consequently, the ETC
values for these tasks on each of the machines in the
computing environment are assumed to be known.
Although the ETC times are known for the tasks to be
executed, the actual execution times may vary because of a

rµ (Fj (C
est, µ), C)

estimated
value

C2

C1

Fj (C
est, µ)= τ

Figure 1. An example geometric analysis of the robustness
radius for a given machine. In the example, resource allocation
m includes the assignment of tasks c1 and c2 to a single machine j.
The robustness requirement for the finishing time of this machine
[i.e., FjðCest;mÞ ¼ t] can be interpreted as a hyperplane (a line in
two dimensions). The estimated execution times for tasks c1 and c2
define a point within the space of all possible values for the
perturbation parameters of this system. The robustness radius
for this machine under allocation m is the shortest distance from
the point estimate of the perturbation parameters to the hyper-
plane defining the robustness requirement for this machine.

2464 ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS

dependence on the characteristics of the input data that are
not known until execution time.

Tasks in a dynamic environment can be assigned in
either immediate mode or batch mode. In immediate
mode, tasks are assigned immediately as they arrive. In
batch mode, tasks are instead collected as they arrive and
assigned as a batch (9, 10). The robustness metric devel-
oped in this subsection is appropriate for use in heuristics
that operate in either immediate mode or batch mode. In
the next subsection, we will give an example of an immedi-
ate mode heuristic developed for this environment.

In this dynamic environment, T independent tasks
arrive dynamically, where the set of tasks to execute and
their arrival times are not known in advance.Each arriving
task is assigned to one machine within the set ofM hetero-
geneous machines. The robustness of a resource allocation
must be determined at each mapping event, where map-
ping events occur whenever a task arrives or completes.
Note that because this is a time-varying problem, the
relevant set of tasks to consider is time dependent. Let
TðtÞ be the set of tasks at time t whose arrival time is less
than or equal to t and have not completed execution by time
t. Let FjðtÞ be the predicted finishing time of machine j, at
time t, for a given resource allocation m, based on the
provided ETC values. Let MQjðtÞ denote the subset of
TðtÞ previouslymapped tomachine j, and let scet jðtÞ denote
the start time of the currently executing task onmachine j.
Using these parameters, we can mathematically express
FjðtÞ as follows:

FjðtÞ ¼ scet jðtÞ þ
X

8 i MQjðtÞ
ETCði; jÞ ð3Þ

According to the first section, we can intuitively define
robustness by considering answers to the three questions
of that section. What behavior makes the system robust?
To be robust, the finishing time of each machine at each
mapping event should be limited in variation.Whatuncer-
tainties is the system robust against? In this environment,
unknown estimation errors in the ETC values may cause
machine finishing times to increase unpredictably. Quan-
titatively, exactly how robust is the system? To answer
this question, we have to determine exactly how much
variation in task execution times can be tolerated while
ensuring that the finishing time of each machine at each
mapping event remains within a allowed range. We
address these points more precisely using the FePIA
procedure to derive a robustness metric for this environ-
ment. Table 2 provides a comprehensive list of term defi-
nitions for this section.

Step 1: We first define the robustness requirement for
this system in terms of FjðtÞ (i.e., the performance
feature of interest is the maximum of the machine
finishing times at each mapping event). Let bðtÞ denote
the maximum of the predicted machine finishing times
at time t. That is,

bðtÞ ¼ max
8 j M

ðFjðtÞÞ ð4Þ

A resource allocation is considered robust if at each
mapping event, the actual finishing time for each
machine is no more than t seconds greater than bðtÞ
[i.e., 8 j;FjðtÞ ! t þ bðtÞ].
Step 2: In this environment, task execution time esti-
mates are subject to unknown estimation errors that
may cause actual task execution times to deviate from
their predicted values. Thus, the perturbation para-
meter of this system is the uncertainty in task execution
time estimates.

Step 3: The identified perturbation parameter will
directly impact the FjðtÞ values. That is, because FjðtÞ
is found using the sum of the ETC values for all tasks in
MQjðtÞ, any increase in the execution time of a task in
MQjðtÞ over its estimate can cause FjðtÞ to increase.

Step 4: Given a resource allocation m at time t, the
robustness radius rmðFjðtÞÞ of machine j can be defined
as the largest collective increase in the estimated task
execution times that can occur without violating the
robustness requirement. Given the count of the number
of tasks assigned to machine j at time t, expressed as
MQjðtÞ, and using the point-to-plane formula of the
previous subsection, we can express rmðFjðtÞÞ as follows:

rmðFjðtÞÞ ¼
t þ bðtÞ-FjðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MQjðtÞ
p ð5Þ

In the static environment of the previous subsection, the
number of robustness radiiwas equivalent to thenumber
of machines in the computing system. However, in this
environment, we need to measure the robustness radius
of eachmachine at each point in timewhere our informa-
tion about the robustness radiusmay change. Let rmðtÞ be
the robustness of the resource allocation as measured at
time t and found as follows:

rmðtÞ ¼ min
8 j M

rmðFjðtÞÞ ð6Þ

Thus, because the mixture of tasks pending execution
changes whenever a task arrives and all tasks must

Table 2. Table of Term Definitions

TðtÞ set of tasks to be assigned at time t
F jðtÞ predicted finishing time of machine j at time t
MQjðtÞ subset of tasks previously mapped to machine j at time t
scetð jÞ start time of the currently executing task on machine j
bðtÞ maximum of the predicted machine finishing times at time t
rmðFjðtÞÞ robustness radius of the completion time of machine j at time t
rmðtÞ robustness metric value at time t

ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS 2465

complete, there will be 2' T 'M robustness radii to be
considered. The minimum over all of these robustness
radii will provide the robustness metric, denoted rm, for
the resource allocation. LetE be the set of all times when
mapping events occur in the system during a resource
allocation. Mathematically, rm can be expressed as fol-
lows:

rm ¼ min
8 e E

rmðeÞ ð7Þ

Defining the robustness metric in this way, rm corre-
sponds to the largest collective deviation from assumed
circumstances that the resource allocation can tolerate
while ensuring that system performance will remain
acceptable. In particular, in this example system, rm
corresponds to the largest collective increase in task
execution times that the system can tolerate and still
guarantee that at all mapping events FjðtÞ ! bðtÞ þ t.

Using Dynamic Robustness. This subsection uses the
example problem formulation of the previous subsection
(presented in Ref. 10 and focuses on generating a dynamic
resource allocation for a set of dynamically arriving, inde-
pendent tasks. The resource allocation is expected to mini-
mize bðtÞ, while being able to tolerate a quantifiable amount
of variation in theETCvalues for the assigned tasks. There-
fore, the goal of heuristics in this environment is to assign
tasks tomachines suchthatbt isminimizedateachmapping
eventwhilemaintaining a specified level of robustness (e.g.,
rmðtÞ(a at each mapping event). The following example of
an immediate mode heuristic, known as feasible k-percent
best, successfully addresses these competing concerns by
iteratively reducing the set ofmachinesunder consideration
until a ‘‘best’’ machine has been selected.

Because this resource allocation heuristic operates in
immediate mode, each task is assigned as it arrives. For
eachnewlyarrivedtask,feasiblek-percentbest identifiesthe
set of all ‘‘feasible’’ machines for the task. The set of feasible
machinesisdefinedforeachtaskwhenitarrivesandincludes
only thosemachines thatwill satisfy the robustness require-
mentforthesystemevenifthetaskunderconsiderationwere
assigned to it [i.e., rmðFjðtÞÞ(a]. Thus, it reduces the set of
machines under consideration to only those that would
satisfy the robustness constraint. If no machines are feasi-
ble, then the heuristic must exit with an error condition
indicating that no allocation exists given the current cir-
cumstances that can satisfy the robustness requirement.

Recall that this resource allocation environment employs
a heterogeneous collection of machines; thus, the possible
execution times for a given taskmay vary from onemachine
to the next. To reduce the set of machines under considera-
tion further,we select from the set of feasiblemachines thek
machines that would provide the smallest execution times
for the task under consideration. Intuitively, we want to
minimize the impact that this task execution has on future
task completion timesbyensuring that the execution timeof
this task is relatively small. Thus, we select a subset of the
feasible machines that consists of only the k machines that
provide the smallest execution times for the task. For these
machines, we compute the completion time for each of the

machines and assign the task to the machine that provides
the smallest completion time for the task. The heuristic
continues in this way until either an error occurs or the
resource allocation is terminated.

STOCHASTIC MODELS OF ROBUSTNESS

Introduction

In some environments, more information may be available
regarding the probability of variations in system para-
meters. For example, we may have historical information
regarding past execution times for a given task that can be
used to approximate the probabilities of all possible execu-
tion times.This stochastic information canbeused to derive
a robustnessmetric. In a stochastic environment, wemodel
the systemparameters that contain uncertainty as random
variables and we assume that stochastic information is
available that characterizes this uncertainty beyond a
simple point estimate, as used in the previous section.

To illustrate theusefulness of stochastic data in resource
allocation, consider an allocation environment with two
machines (A and B). In the example situation of Fig. 2,
some tasks have previously been assigned to machines A
and B. We would like to select a machine to execute task 3,
and we would like task 3 to complete by the plotted com-
pletion time constraint. If we use a point estimate for the
completion time of task 3 (e.g., the mean of the completion
time distributions), then it would seem that the best deci-
sion would be to assign task 3 to machine A whose point
estimate of the completion time is smaller than onmachine
B.However, byusing the full stochastic information,we can
see that although the point estimate of the completion time

machine A

time

time

machine B

est. finishing
time (mean)

finishing time
constraint

probability of
exceeding

finishing time
constraintpr

ob
ab

ili
ty

 d
en

si
ty

Figure 2. An example system where we are to assign task 3 to
either machine A or machine B, and we would like task 3 to
complete prior to theplotted completion time constraint. Presented
are the task completion time probability density functions for task
3 on both machine A and machine B. Using the point estimate,
plotted as a dashed line in the figure, machine A seems to be the
better choice. However, accounting for the complete stochastic
information describing all possible completion times, machine B
has a lower probability to violate the makespan constraint and is
clearly the better choice.

2466 ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS

distribution for task 3 on machine A is smaller than on
machine B, the tail of the distribution is much smaller on B
than on A. That is, there is a much higher probability that
task 3 will violate its completion time constraint on
machine A, making machine B the statistically better
choice.

Stochastic Robustness in a Static Environment

Deriving a Robustness Metric. In this environment, we
are concerned with allocating a set of T tasks to M hetero-
geneous machines where we are concerned with system
makespan as the performance metric. Below, we use the
FePIA procedure to derive a robustness metric for this
environment. Table 3 provides a comprehensive list of
term definitions for this section.

Step 1: For this system, the performance feature of
interest is system makespan, denoted c. A resource
allocation canbe considered robust if theactualfinishing
time of each machine is less than or equal to a fixed
constant bmax (i.e., c ! bmax).

Step 2: Uncertainty in this system originates because
the exact execution time for each task is unknown. We
can model the execution time of each task i on each
machine j as a random variable (11), denoted hi j.

Step 3: The finishing time of eachmachine in a stochas-
tic environment is calculated as the sumof the execution
time random variables for each task assigned to that
machine (12). Let nj be the count of the number of tasks
assigned to machine j. The finishing time of machine j,
referred to as a local performance characteristic c j, can
be expressed as follows:

c j ¼
Xnj

i¼1

hi j ð8Þ

Thus, the systemmakespan canbe expressed in termsof
the local performance characteristics as follows:

c ¼ maxfc1; . . .;cMg ð9Þ

Because of its functional dependence on the execution
time random variables, the system makespan is a ran-
dom variable. That is, the uncertainty in task execution
times can have a direct impact on the performance
metric of this system.

Step 4: Finally, we conduct an analysis to determine
exactly how robust the system is under a specific
resource allocation. The stochastic robustness metric,
denoted ", is defined as the probability that the perfor-
mance characteristic of the system is less than or equal

to bmax (i.e., " ¼ P½c ! bmax*). For a given resource alloca-
tion, the stochastic robustness metric measures the
probability that the generated system performance
will satisfy our robustness requirement. Clearly, unity
is the most desirable stochastic robustness metric value
(i.e., there is a zero probability that the system will
violate the established robustness requirement.)

Assuming no intertask data transfers exist among
the tasks to be assigned, the random variables for the
local performance characteristics (c1;c2; :::;cM) are
mutually independent. As such, the stochastic robust-
ness metric for a resource allocation can be found as the
product of the probability that each local performance
feature is less than or equal to bmax.Mathematically, this
is given as follows:

" ¼ !
8 j
ðP½c j ! bmax*Þ ð10Þ

If the execution times hi j for tasks assigned tomachine j
are mutually independent, then the summation of Eq.
(8) can be computed using an ðnj-1Þ-fold convolution of
the corresponding pmfs (12,13).

Using Static Robustness. Two ways of using the static
stochastic robustness metric are apparent by inspecting
the parameters of Eq. (10). The two parameters bmax and "
can alternately be either optimized or specified by the
user. For example, the user could specify a bmax value as a
constraint and employ a heuristic to attempt to maximize
the robustness (") of the resulting resource allocation.
That is, in this case, the user is interested in a resource
allocation that has the highest probability to complete all
of the tasks by bmax.

Maximizing the robustness of a resource allocation
given a fixed bmax requires minimizing the c j values,
thus, maximizing the probability that each machine will
finish before bmax.

For some systems, it may be unclear how to select an
appropriate bmax value. Thus, we can instead define a mini-
mumacceptable"value, denoted!, andattempt tominimize
bmax such that the probability that all tasks completed by
bmax is at least !. In this subsection, we consider the case
where the minimum acceptable robustness value ! is spe-
cified by the user and we want to minimize bmax such that
"(!. InRef. 14, theperiodminimization routine (PMR)was
introduced to iterate through the possible bmax values for a
given resource allocation to find the smallest bmax value,
provided by that allocation, such that "(!.

To demonstrate the use of the stochastic robustness
metric in a resource allocation, we introduce a static sto-
chastic environment where a set of machines periodically
receive data sets to be processed by a collection of n tasks
(14). Each dataset must be processed by all of the tasks
before the next dataset arrives. The execution times for
each of the n tasks is assumed to be inherently data
dependent; thus, the exact execution time for each task
isunknownprior to its execution.However,weareprovided
a pmf describing the probabilities of task execution times
for each machine.

Table 3. Table of Term Definitions

c performance feature
bmax finishing time constraint
hi j execution time random variable

of task i on machine j
c j finishing time of machine j
" stochastic robustness metric

ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS 2467

It is important to note that because this is a static
environment, we are determining the allocation of tasks
tomachines in advance of deploying the system, (i.e., before
it will be required to process real data). Thus, by optimizing
the allocation ofmachines to tasks in advance of processing
real data, we can improve the frequency with which the
system can process datasets.

The stochastic robustness metric for this system is the
probability that the actualmakespan of the system does not
exceed bmax (i.e., " ¼ P½c ! bmax*). The goal of resource allo-
cation heuristics in this environment is to minimize bmax

such that " is always greater than or equal to a given fixed
probability ! (i.e., "(!). Intuitively, by specifying a mini-
mum robustness value ("), the user is specifying an accep-
table probability for the makespan to be greater than bmax

(i.e., 1-").
We can use this formulation of robustness alongwith the

PMR procedure to design a two-phase greedy heuristic for
resourceallocationinthissystem(14).Thetwo-phasegreedy
heuristic first initializes the set of tasks to be executed to the
entire set of tasks that are available.Although thereare still
tasks to execute, the heuristic uses two phases to find the
next task assignment. In the first phase, the heuristic
determines a machine assignment for each unassigned
task that minimizes bmax (ignoring all other unassigned
tasks), where we use the PMR procedure to determine
the smallest bmax for each possible allocation such that
the robustness constraint (!) is still satisfied. In the second
phase, the heuristic selects the task machine pair (found in
the first phase) that provides the smallest overall bmax. The
selected task is then allocated to its chosen machine and
removed from the set of tasks to be assigned. The heuristic
continues in this way until all tasks have been allocated.

This subsection presented just two example uses of the
static stochastic robustnessmetric; manymore usesmay be
possible. Thenext section considers openproblems in robust
resource allocation and heterogeneous computing as a
whole.

OPEN PROBLEMS

The open problems in robust resource allocation are directly
related to the long-term goals of heterogeneous computing
research (15). The principal goal in heterogeneous comput-
ing (HC) research is to develop software environments that
automatically assign and execute applications, where appli-
cations are expressed in a machine-independent, high-level
language. Developing such environments will facilitate the
use of heterogeneous computing by (1) increasing software
portability (i.e., programmers need not be concerned with
themachine details of the heterogeneous environment) and
(2) increasing the possibility of deriving better taskmachine
assignments than users themselves derive using ad hoc
methods.

A four-stage conceptualmodel for using aheterogeneous
computing environment composed of dedicatedmachines is
shown in Fig. 3, based on Ref. 16. The rectangles in the
figure indicate actions to be taken, and the ovals indicate
the information produced by those actions. The model is
‘‘conceptual’’ because as yet no complete automatic imple-

mentation exists. The goal of the model is to describe the
steps required for the automatic execution of applications
in a heterogeneous computing environment. Each of the
rectangles in Fig. 3 represents an open research problem,
where additional new techniques need to be developed.

In stage 1, the system will determine parameters rele-
vant to both the applications that are to be executed and the
machines that are to execute them. The information gen-
erated by this stage includes a scheme for categorization of
application needs and a similar scheme for machine cap-
abilities. Anapplication is assumed to be composed of one or
more independent tasks. Some tasks can again be further
decomposed into a collection of two ormore communicating
subtasks, where subtasks are assumed to have data depen-
dencies (e.g., execution results may need to be communi-
cated between subtasks). It is assumed that individual
subtasks may be assigned to different machines for execu-
tion.

The informationgenerated in stage1 is passed to stage2,
where task profiling and analytical benchmarking are
performed. In task profiling, applications are partitioned
into tasks and subtasks that have different computational
needs, where the computational needs within a given task
are consistent. Each of the tasks and subtasks is then
profiled to determine quantitatively their computational
requirements.Analytical benchmarkingquantifies theper-
formance of each machine in the suite with respect to
executing each type of operation being considered. Tech-
niques for performing task profiling and analytical bench-
marking are needed.

In stage3, taskprofilingdataandanalytical benchmark-
ing results are combined to create execution time estimates
for each task and subtask on each machine in the suite.
These results, along with initial loading and ‘‘status’’ of
each machine in the suite, are used to generate machine
assignments, based on a chosen optimization criteria, for
each task and each subtask to be executed. Hierarchical
scheduling techniques are of interest to allow the develop-
ment of very large HC environments (e.g., grids) (17). In
some environments, the scale of the distributed system
requires that task assignment be done in a distributed
fashion, as opposed to a centralized resource allocation.

Stage 4 corresponds to the execution of the applications
in the heterogeneous computing environment. In general,
information regarding task execution times may be esti-
mated in advance (e.g., taken from the task profiling of
stage 2), but exact information regarding actual task execu-
tion times may not be known in advance (e.g., task execu-
tion times may be data dependent). In a dynamic
environment, task completion times and machine load-
ing/status information are monitored during execution
and may be used to influence resource allocation decisions.
For example, the information may be used to alter task
machine assignments to reflect current user needs.
Improved methods for determining and disseminating
the current loading and status of machines in the HC suite
must also be determined. Similarly, methods are required
for monitoring current network load and status.

To realize this automatic heterogeneous computing
environment requires further research in many areas.
For example, in stage 2, machine-independent languages

2468 ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS

with user-specified directives are needed to (1) allow com-
pilation of applications into efficient code suitable for any
machine in an HC system, (2) aid in decomposing applica-
tions into tasks and subtasks, and (3) facilitate the deter-
mination of task and subtask computational requirements.

Incorporating a model for multitasking within a
machine is another area of ongoing HC research related
to stage 2. Most modern operating systems support some
level of multitasking for an individual processor; however,
it is unclear how to incorporate this information into the
resource allocation process.

Another area of research related to stage 2 involves
modeling uncertainty in perturbation parameters for
robust resource allocation. For example, in a stochastic
environment, methods are needed for leveraging experien-
tial data to model uncertainty in perturbation parameters
(18). This is important because prior work in stochastic
resource allocation environments has assumed that these
models are available (i.e., in the form of probability mass
functions). Furthermore, once a pmf has been established
for a perturbation parameter, methods are needed for
updating the existing pmf with new experiential data.
Updating pmfs with themost current information is impor-
tant in a dynamic environment because it enables the
model to track changes in perturbation parameter distri-

butions over time. In addition, pmfs based on experiential
data may provide only an approximation of the true dis-
tribution of perturbation parameter values, and methods
are needed for determining the impact of estimation error
in pmfs on robustness calculations. That is, how to make
resource allocation decisions robust with respect to estima-
tion errors in perturbation parameter pmfs is an open
problem.

Many HC environments have inherent quality-of-ser-
vice constraints that must be met during resource alloca-
tion. Determining such resource allocations is an active
area of research related to stage 3. For example, this article
has presented several examples of HC environments with
quality-of-service constraints and has shown how to apply
the robustness methodology to determine resource alloca-
tions that meet those constraints. In addition to these
examples, other quality-of-service requirements might
involve multiple robustness requirements (e.g., minimum
bandwidth requirements), guaranteed processor time for
certain users, or real-time response capabilities.

Current research in robust resource allocation, related to
stage 3, is investigating combining multiple types of per-
turbation parameters into a single robustness metric (e.g.,
combiningmachine failure probabilities and task execution
time uncertainty into a single metric). Combining multiple

applications machines
generate parameters

relevant to both
applications and machines

categories for
computational

needs

task profiling
of

applications

decomposition into
tasks and subtasks,

task and subtask
characteristics

initial status of
machines, network;

performance measure

static and dynamic
resource allocation

matching of tasks and
subtasks to machines,

execution schedule

execute
application on

suite of machines

Stage 4

Stage 2

Stage 3

Stage 1

monitor system
performance

status of machines
and network; value of
performance measure

machine characteristics,
inter-machine

communications

analytical
benchmarking of

machines

categories for
machine

capabilities

Figure 3. A model of required support for using heterogeneous computing environments. Ovals
indicate information and rectangles actions. The dashed lines represent the components needed to
perform a dynamic resource allocation.

ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS 2469

perturbation parameters into a single measure of robust-
ness will extend the applicability of robust resource alloca-
tion into problem domains where these uncertainties occur
simultaneously.

In a stochastic environment, resource allocation deci-
sionsmade in stage3 of ourmodelmaydepend on combining
perturbation parameter pmfs. For example, pmfs for per-
turbation parameters can be used to produce an overall
metric for the robustness of a resource allocation. In a
dynamic environment, where resource allocation decisions
must be made quickly, it is important to identify new fast
methods for combining perturbation parameter distribu-
tions to produce a robustness value during resource alloca-
tion. If heuristics can quickly combine perturbation
parameter distributions, then we can determine methods
for using the stochastic robustness metric to guide resource
allocation decisions during execution.

SUMMARY

Robust resource allocation is an important research area
within heterogeneous parallel and distributed computing
systems. The three robustness questions are fundamental
to the understanding of robustness in any system: (1) What
behavior makes the system robust? (2) What uncertainties
must the system be robust against? (3) Quantitatively,
exactly how robust is the system? These three core ques-
tions led to the development of the FePIA procedure for
deriving a robustness metric. We have applied the FePIA
procedure to derive robustness metrics in a variety of
contexts, including several different perturbation para-
meters. In addition to demonstrating the derivation of a
robustness metric, we have also demonstrated many ways
to incorporate a robustness metric into resource allocation
heuristics.

ACKNOWLEDGMENTS

The authors would like to thank Chris Klumph, Kody
Willman, and Luis Briceño for their valuable comments.
This researchwas supported by theNSFunderGrantCNS-
0615170 and by the Colorado State University George T.
Abell Endowment.

BIBLIOGRAPHY

1. T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, R. F. Freund,
D. Hensgen, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, and B. Yao, A comparison of eleven static heur-
istics for mapping a class of independent tasks onto hetero-
geneous distributed computing systems, J. Parallel Distr.
Comput., 61 (6): 810–837, 2001.

2. O. H. Ibarra and C. E. Kim, Heuristic algorithms for schedul-
ing independent tasks onnon-identical processors,J.ACM, 24
(2): 280–289, 1977.

3. L. Bölöni and D. Marinescu, Robust scheduling of metapro-
grams, J. Scheduling, 5 (5): 395–412, 2002.

4. A.DoganandF.Ozguner,GeneticAlgorithmbasedscheduling
of meta-tasks with stochastic execution times in heteroge-

neous computing systems, Cluster Comput., 7 (2): 177–190,
2004.

5. S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, Measur-
ing the robustness of a resource allocation, IEEE Trans.
Parallel Dist. Syst., 15 (7): 630–641, 2004.

6. S. Ali, A. A. Maciejewski, and H. J. Siegel, Perspectives
on Robust Resource Allocation for Heterogeneous Parallel
Systems, Boca Raton, FL: Chapman & Hall, 2008, pp. 411–
4130.

7. P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar,
A. Mehta, R. Pichel, A. Horiuchi, V. Shestak, M. Al-Otaibi,
Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin, P. Lee, K.
Guru, M. Raskey, and A. Pippin, Robust static allocation of
resources for independent tasks under makespan and dollar
cost constraints, J. Parallel Dist. Comput., 67 (4): 400–
416, 2007.

8. Y. A. Li, J. K. Antonio, H. J. Siegel,M. Tan, andD.W.Watson,
Determining theexecution timedistribution foradataparallel
program in a heterogeneous computing environment, J. Par-
allel Dist. Comput., 44 (1): 35–52, 1997.

9. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund,Dynamicmapping of a class of independent tasks onto
heterogeneous computing systems, J. Parallel Dist. Comput.,
59 (2): 107–121, 1999.

10. A. M. Mehta, J. Smith, H. J. Siegel, A. A. Maciejewski, A.
Jayaseelan, andB. Ye, Dynamic resource allocation heuristics
that manage tradeoff between makespan and robustness,
J. Supercomput., 42 (1): 33–58, 2007.

11. L.Wasserman,All ofStatistics:AConciseCourse inStatistical
Inference, New York: Springer, 2005.

12. V. Shestak, J. Smith, H. J. Siegel, and A. A. Maciejewski, A
stochastic approach to measuring the robustness of resource
allocations in distributed systems, Proc. of the 2006 Interna-
tional Conference on Parallel Processing (ICPP 2006), 2006
pp. 6–12.

13. A.Leon-Garcia,Probability&RandomProcesses forElectrical
Engineering, Reading, MA: Addison Wesley, 1989.

14. V. Shestak, J. Smith, R. Umland, J. Hale, P. Moranville,
A. A. Maciejewski, and H. J. Siegel, Greedy approaches to
static stochastic robust resource allocation for periodic sensor
driven systems, Proc. of the 2006 International Conference on
Parallel and Distributed Processing Techniques and Applica-
tions, 2006, pp. 3–9.

15. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang,
Heterogeneous computing: Challenges and opportunities,
IEEE Comput., 26 (6): 18–27, 1993.

16. M.Maheswaran, T.D. Braun, andH. J. Siegel,Heterogeneous
distributed computing, inEncyclopedia of Electrical and Elec-
tronics Engineering, New York: Wiley, 1999.

17. I. Foster, and C. Kesselman, (eds.),The Grid 2: Blueprint for a
New Computing Infrastructure, San Francisco, CA: Morgan
Kaufmann, 1999.

18. M.A. Iverson, F. Ozguner, andL. Potter, Statistical prediction
of task execution times through analytical benchmarking for
scheduling in a heterogeneous environment, IEEE Trans.
Comput., 48 (12): 1374–1379, 1999.

JAY SMITH

HOWARD JAY SIEGEL

ANTHONY A. MACIEJEWSKI

Colorado State University
Fort Collins, Colorado

2470 ROBUST RESOURCE ALLOCATION IN HETEROGENEOUS PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS

