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a b s t r a c t

Recently there has been an increased demand for imaging systems in support of high-
speed digital printing. The required increase in performance in support of such systems
can be accomplished through an effective parallel execution of image processing applica-
tions in a distributed cluster computing environment. The output of the system must be
presented to a raster based display at regular intervals, effectively establishing a hard
deadline for the production of each image. Failure to complete a rasterization task before
its deadline will result in an interruption of service that is unacceptable. The goal of this
research was to derive a metric for measuring robustness in this environment and to
design a resource allocation heuristic capable of completing each rasterization task before
its assigned deadline, thus, preventing any service interruptions. We present a mathemat-
ical model of such a cluster based raster imaging system, derive a robustness metric for
evaluating heuristics in this environment, and demonstrate using the metric to make
resource allocation decisions. The heuristics are evaluated within a simulation of the stud-
ied raster imaging system. We clearly demonstrate the effectiveness of the heuristics by
comparing their results with the results of a resource allocation heuristic commonly used
in this type of system.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently there has been an increased demand for imaging systems in support of high-speed color digital printing. In-
creases in print speeds and resolution have necessitated a significant increase in the performance of imaging systems in sup-
port of digital printing systems. This required increase in performance can be achieved through an effective parallel
execution of image processing applications in a distributed computing environment. In this paper, we present a mathemat-
ical model of a distributed raster imaging system, where the output of the systemmust be presented to a raster based display
at fixed regular time intervals, effectively establishing a hard deadline for the completion of each output image. This math-
ematical model is used as the basis for the design of a resource allocation heuristic applicable to this distributed computing
environment. We extend the use of our model by deriving a robustness metric appropriate to this environment. This robust-
ness metric is used within our presented resource allocation heuristic as an alternate optimization criterion for the heuristic.
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In this system, an input stream of data, described using a high level language known as a page description language (pdl),
e.g., postscript or the portable document format (pdf), arrives at an imaging system for rasterization [8]. Rasterization of pdl
images converts the images from a pdl description to a bitmap. Requests for rasterization of pdl images are processed by a
dedicated cluster of workstations, where individual pdl image requests, referred to as sheetsides, are distributed to the het-
erogeneous cluster by a centralized image dispatcher. The collection of sheetside requests together describe an image stream
that is displayed on a raster based device, e.g., a printer or computer monitor. The frequency of requests and the magnitude
of the data required to describe each request pose a considerable challenge for even modern workstations. Input streams in
this environment routinely consist of over 100,000 images, where each image typically requires 10–100 megabytes of stor-
age and successive image deadlines are on the order of a tenth of a second apart.

For the studied environment, the images that comprise the input datastream are required to be displayed in order on the
output device. That is, each pdl image has a unique number assigning its place in the overall stream of images and will be
requested by the raster display in that order. In addition, the system has a finite amount of storage capacity (distributed
evenly across the cluster of workstations) in which to store rasterized images. The bitmaps to be displayed are retrieved
at a regular interval directly from the workstation output buffers by the display device. Bitmaps are displayed for a fixed time
interval, thus, the display time of the first bitmap establishes a hard deadline for each subsequent bitmap. Missing a deadline
for a required bitmap results in an interruption of service that is unacceptable.

The studied rasterization system has some additional special requirements that complicate the task of assigning the
stream of incoming pdl images to available workstations. The computation required to convert a pdl image to a bitmap de-
pends on the content of the pdl file. The system only has an estimate of the time required to rasterize each incoming pdl
image on each type of processor and this estimate may differ substantially from the actual time required for rasterization.
Many of the system design decisions are motivated by an attempt to mitigate the impact of this uncertainty.

Second, the overall system has finite input and output storage capacity, thus, there is a limit on the number of pdl images
that can be buffered in the system, both as input pdl images and as output bitmaps. Finally, pdl images continue to arrive for
rasterization while others are being rasterized, i.e., the resource allocation must be produced dynamically [13]. The general
problem of assigning tasks to workstations in a dynamic environment has been shown to be NP-complete (e.g., [4,5,9]). Con-
sequently, the design of heuristics for dynamic resource allocation is an active area of research [3,6,13,15,20,23].

The concept of robustness of a resource allocation was introduced in [1,18], and later efforts applied the concept to re-
source management [15,18,20,21,2,17]. The mathematical model presented in this work builds upon principles addressed
in our earlier work on robustness. In analyzing this image processing system, we identified that rasterization times are a
source of uncertainty in the system and that the arrival ordering of sheetsides is not known a priori. This uncertainty can
impact the system by causing sheetsides to miss their deadline, resulting in an interruption of service that is unacceptable
in this system. Clearly, the area of robust operation within this system exists where bitmaps are always available in advance
of their deadlines.

The primary contributions of this work are: (1) a mathematical model of a distributed raster image processing system, (2)
the derivation of a robustness metric for a dynamic distributed computing system with hard deadlines for task completions,
and (3) the design of the resource allocation heuristics suitable for this type of system. We clearly demonstrate the superi-
ority of our heuristic technique (using two different optimization criteria) over a technique commonly used in this type of
environment.

The details of the system model that motivated this research are given in the next Section. This system model is used to
design a mathematical model of rasterization completion times presented in Section 3. Section 4 describes a new resource
allocation heuristic that incorporates this mathematical model for rasterization completion times. We present a discussion of
the performance objective for this initial heuristic in Section 5. This performance metric motivated the derivation of the
robustness metric in Section 6. The details of the simulation setup are described in Section 7 and the results of the heuristics
are presented in Section 8. A sampling of related work is in Section 9 and Section 10 concludes the paper. A glossary of nota-
tion and acronyms used in the paper are tabulated in the Appendix.

2. System model

Fig. 1 is a conceptual drawing of the system that motivated this research. In this environment, two display devices com-
bine to provide a high-speed digital continuous-form, color duplex (i.e., two-sided) printer. Paper is physically moved
through each press successively at high-speed and cannot be immediately stopped. Consequently, if a bitmap is not readily
available in the display device when it is needed, then a service interruption occurs because the printer must be stopped to
accommodate the delay and the advanced paper removed from the output of the device.

The imaging system is composed of a collection of workstations dedicated to image rasterization, controlled by a separate
master workstation called the head node. Individual sheetsides are transferred to the head node, where they are dispatched
by the centralized image dispatcher to one of the dedicated workstations for rasterization. Each sheetside completely de-
scribes an entire display image suitable for the output device, and is expressed in a logical page description language that
must be transformed into a bitmap suitable for the display device.

Input sheetsides are queued for rasterization in the Head Node Input Queue (HNIQ). The centralized image dispatcher
assigns sheetsides from the HNIQ to workstations for rasterization. After assignment, the head node places the sheetside
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in a queue for a transmitter that will then transmit the sheetside to its destination. The size of the transmitter queue, de-
noted jTQ j, is limited to only two sheetsides and the transmitter may only transfer one sheetside at a time. Further, once
a sheetside has been placed into the transmitter queue, the destination workstation for the sheetside can no longer be mod-
ified. Each workstation has a finite capacity input buffer for storing sheetsides prior to their rasterization. Therefore, before
the incoming sheetside can be placed in the transmit queue, the head node must ensure that sufficient capacity exists in the
input buffer of the receiving workstation to acquire the file. If there is sufficient input buffer capacity, then the sheetside may
be queued up for transmission.

It is assumed thatM heterogeneous dedicated workstations are available to convert pdl sheetsides to bitmaps. Each work-
station is interconnected to the head node via a 1 Gbit ethernet network and interconnected to the two output display de-
vices using a 4 Gbit fiber channel. The memory of each workstation is divided into two blocks, where one block is used to
store sheetside pdl files (the input to rasterization) and the other block is used to store output bitmaps. The sheetsides in
the input block are accessed in a FIFO fashion.

When a workstation completes the rasterization of a sheetside, notification of the completion is sent to the head node,
and the appropriate display device. When the display device is ready to display the bitmap, it retrieves the completed bitmap
directly from the output buffer of the workstation where the rasterization was performed. Each display device has an input
buffer with sufficient capacity to store two bitmaps, i.e., the bitmap currently being displayed and the next bitmap to be dis-
played. In this system, all bitmap files are assumed to be the same size, and the time required to display each bitmap is as-
sumed constant.

3. Model of rasterization completion time

The mathematical model of this system defines a method for calculating the deadline for a given sheetside, and a method
for determining the estimated rasterization completion time for a sheetside on a given workstation in the system at a specific
point in time. The completion of every sheetside is subject to a hard deadline. That is, to prevent a service interruption, each
sheetside must complete rasterization, and be available for consumption in the input buffer of the appropriate display device
by its given deadline. To calculate the deadline for a sheetside, let t0 be the absolute wall-clock start time for both display
devices. Starting at t0, each display will require a new bitmap every tdisplay seconds, where tdisplay is the time required to dis-
play a bitmap on the device. Sheetsides are numbered starting with 1. Incoming sheetsides are divided between the two dis-
plays such that the odd numbered sheetsides go to display 1 and the even numbered sheetsides go to display 2 (see Fig. 1).

For the kth actual sheetside of the job, denoted Sk, the bitmap must be available for printing at time t0 þ tdisplay
Sk"1
2

! "
, if k is

odd, and at time t0 þ tdisplay
Sk
2

! "
, if k is even (note: the division by 2 is because two sides are printed simultaneously). Let tbitmap

tran

be the bitmap transfer time from any workstation to either display device. Then, the deadline for completing Sk, denoted
td½Sk$, is the latest wall-clock time for a workstation to produce the bitmap for Sk

td½Sk$ ¼
t0 þ tdisplay

Sk"1
2

! "
" tbitmap

tran if Sk is odd;

t0 þ tdisplay
Sk
2

! "
" tbitmap

tran if Sk is even:

8
><

>:
ð1Þ

The value of td½Sk$will be used later to determine the availability of output buffer space on a workstation. For this purpose,
the deadline equation needs to be expressed in terms of the ordering of sheetsides on a given workstation. Let BQj

i be the ith
sheetside to have entered the input queue of workstation j for a given job. We define the following operator numðBQj

iÞ that
evaluates to the actual sheetside number of sheetside BQj

i, i.e., Sk ¼ numðBQj
iÞ. Then Sk in Eq. (1) can be replaced by numðBQj

iÞ.
Note that Sk and BQj

i represent the same physical sheetside and by using the num operator these notations can be used
interchangeably.

The estimated rasterization completion time for a sheetside is composed of the earliest possible time that rasterization can
begin and the estimated rasterization time. Let tstart BQj

i

h i
be the earliest possible rasterization start time for sheetside BQj

i, let

Fig. 1. A conceptual model of a high performance, cluster based imaging system.
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ERT BQj
i

h i
be the estimated rasterization time for sheetside BQj

i, and let tjcomp BQj
i

h i
be the estimated rasterization completion

time for a given sheetside BQj
i on workstation j. Then tjcomp BQj

i

h i
can be calculated as:

tjcomp BQj
i

h i
¼ tstart BQj

i

h i
þ ERT BQj

i

h i
: ð2Þ

The estimated rasterization time, ERT BQj
i

h i
, for each sheetside is assumed known based on empirical data. Recall that the

workstations in the cluster are heterogeneous, thus, the value of ERT BQj
i

h i
may differ for each workstation in the cluster.

There are many well-known techniques for gathering these execution time estimates from empirical data [7,11,12,19,24].
The start time for rasterization depends on several factors: when the sheetside was transferred to the workstation, when
the previous sheetside assigned to the workstation completed, and the availability of the output buffer of the workstation.
The rasterization for a sheetside starts only if the output buffer has enough capacity to accommodate the resultant bitmap.
During the rasterization process the amount of memory required to store a bitmap remains reserved in the output buffer.
The memory held by a sheetside in the input buffer is released when rasterization for that sheetside is completed.

To determine when a sheetside was (or will be) transferred to a workstation, we have to consider all other sheetsides in
the HNIQ that are ahead of it. Let Sk be the kth sheetside to enter the HNIQ for a given job, where Sk"1 is the sheetside ahead
of Sk in the HNIQ. To evaluate the estimated departure time for Sk to workstation j, the input buffer capacity of workstation j
must be determined. Space in the input buffer is limited by two factors: the maximum number of sheetsides ðQÞ allowed in
the input buffer and the size in bytes of the input buffer.

Recall that the estimated rasterization times are known to be only estimates of the actual rasterization times. The number
of sheetsides that are allowed to queue up on any given workstation is limited to a relatively small, fixed number of pending
sheetsides, to attempt to mitigate the impact of delays caused by under-estimating sheetside rasterization times. If the size
of the pdl file describing sheetside Sk is less than or equal to the available input buffer capacity of workstation j, then, assum-
ing there are fewer than Q sheetsides in the input buffer of workstation j; Sk can be immediately sent to j following the trans-
mission of Sk"1 out of the head node. Otherwise, Sk will be delayed at the head node (blocking Sz; z > k) for the amount of
time required for a certain number of sheetsides previously assigned to workstation j to be rasterized, thus, creating buffer
capacity sufficient to accommodate the pdl file of sheetside Sk or for the number of pending sheetsides on workstation j to be
less than Q .

To calculate the available input buffer capacity at workstation j, let K be the sequence of sheetsides that are in the input
buffer of workstation jwhen the head node transmitter is ready to send sheetside Sk. Note that this will include any sheetside
currently being rasterized by workstation j. Let the operator sizeðSiÞ give the size in bytes of the pdl file for sheetside Si, and
let CAPj

in describe the total input buffer capacity of workstation j. Then, the available capacity of the input buffer for work-
station j, denoted ACj

in, is:

ACj
in ¼ CAPj

in "
X

8Si2K
sizeðSiÞ: ð3Þ

Define txdept½Sk"1$ as the departure time of Sk"1 from HNIQ to workstation x. Let tsdftran½Sk"1$ be the time required to transfer the
sheetside description file describing Sk"1, from HNIQ to workstation x. If sizeðSkÞ 6 ACj

in and jKj < Q ; Sk can depart at time:

tjdept½Sk$ ¼ txdept½Sk"1$ þ tsdftran½Sk"1$: ð4Þ

Otherwise, sheetside Sk cannot be transmitted until a sufficient number of sheetsides have been processed from the input
buffer of workstation j, to ensure that these two conditions hold. If after processing some sheetside Sm 2 K these conditions
hold, then tjdept½Sk$ ¼ tjcomp½Sm$. If k ¼ 1, i.e., Sk is the first sheetside to be dispatched by the centralized image dispatcher, then
Sk can depart immediately. Fig. 2 presents concise pseudo-code for determining the earliest estimated departure time for a
given sheetside.

Prior to rasterization, accurately determining when rasterization can begin for some sheetside BQj
i, where

Sk ¼ numðBQj
iÞ, must also account for possible delays incurred due to the limited capacity of the output buffer on each

workstation. Consider workstation j with output buffer capacity CAPj
out . Because bitmaps are all assumed to be the same

size, i.e., require the same number of bytes to store, the number of bitmaps that could be stored in the output buffer of
any workstation is constant and known in advance. Assume that N bitmaps can be placed in the output buffer of a given
workstation. Define the delay to begin processing sheetside BQj

i, denoted Dout BQj
i

h i
, as the time that BQj

i must wait after
arriving at the head of the input queue of workstation j until there is sufficient capacity in the output buffer of the work-
station to store the output bitmap. To quantitatively determine Dout BQj

i

h i
, there are three cases to consider. First, if fewer

than N sheetsides have entered the input queue of workstation j, then the output buffer of workstation j cannot be full, i.e.,
Dout BQj

i

h i
¼ 0. In the second case, assume that more than N sheetsides have entered the input queue of workstation j, but

at the time when sheetside BQj
i completes there will be at least one free slot in the output buffer of workstation j, i.e., at

least sheetside BQj
i"N has left the output buffer, then Dout BQj

i

h i
¼ 0. In the final case, if the output buffer of workstation j is

full when sheetside BQj
i"1 completes, then BQj

i must wait for an opening in the output buffer before its processing can
begin. Therefore, sheetside BQj

i will be delayed until the sheetside at the head of the output buffer of the workstation com-
pletes transmission to the raster device. The three delay cases for BQj

i to begin processing can be described succinctly as
follows:
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Case 1: if i < N,

Dout BQj
i

h i
¼ 0:

Case 2: if td½BQi"N$ þ tbitmap
tran 6 tjcomp BQj

i"1

h i
,

Dout BQj
i

h i
¼ 0:

Case 3: otherwise,

Dout BQj
i

h i
¼ td BQj

i"N

h i
þ tbitmap

tran " tjcomp BQj
i"1

h i

Using Dout BQj
i

h i
, we can define the estimated rasterization start time of sheetside BQj

i. That is, tstart BQj
i

h i
occurs when two

conditions are satisfied: BQj
i is present at the head of the input queue on workstation j, and the output buffer of workstation j

has sufficient capacity to accommodate the rasterization result. If these conditions are not satisfied, then tstart BQj
i

h i
is defined

by one of two cases. First, if there is no opening in the output buffer of workstation j when BQj
i"1 completes and BQj

i is avail-
able at the head of the input buffer of workstation j, then:

tstart BQj
i

h i
¼ tjcomp BQj

i"1

h i
þ Dout BQj

i

h i
: ð5Þ

In the second case, if there is an opening in the output buffer of workstation j when BQj
i"1 completes and BQj

i is not in the
input buffer of workstation j, then the estimated start time of BQj

i is equal to the arrival time of BQj
i in the input buffer, i.e.:

tstart BQj
i

h i
¼ tdept BQj

i

h i
þ tsdftran BQj

i

h i
: ð6Þ

That is, as soon as BQj
i arrives in the input buffer of workstation j, it will be rasterized without further delay. Note that if there

is no opening in the output buffer on workstation j and BQj
i is not in the input buffer of workstation j, then one of the previous

two cases will occur some time in the future. The two equations corresponding to the two cases for the earliest rasterization
start time can be combined to calculate the estimated start time for BQj

i as follows:

tstart BQj
i

h i
¼ max tjcomp BQj

i"1

h i
þ Dout BQj

i

h i! "
; tdept BQj

i

h i
þ tsdftran BQj

i

h i! "n o
: ð7Þ

Note that calculation of tjcomp BQj
i

h i
is based on a recursion because it depends on tstart BQj

i

h i
which in turn relies on

tjcomp BQj
i"1

h i
. The recursion basis is formed with BQj

1, whose tjcomp BQj
1

h i
is found as:

tjcomp BQj
1

h i
¼ ERT BQj

1

h i
þ tdept BQj

1

h i
þ tsdftran BQj

1

h i
: ð8Þ

That is, because BQj
1 is the first sheetside to be rasterized on workstation j, there can be no delays incurred from processing

earlier sheetsides on this workstation.

4. Minimum rasterization completion time heuristic (MRCT)

The resource allocation heuristic described in this section assumes that the system is in a steady state of operation, i.e.,
some sheetsides have already been rasterized and the start time t0 for the display devices is known. In this situation, sheet-

Fig. 2. Pseudo-code for determining the earliest estimated departure time for sheetside Sk assigned to workstation j.
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sides are dispatched to the workstation that provides the minimum rasterization completion time as defined by our math-
ematical model of the system. That is, tjcomp½Sk$ is calculated for every workstation j as if Sk were assigned to it, and the work-
station that gives the minimum value is selected.

Because this is a dynamic environment, updates to the minimum rasterization completion time occur when rasterization
completes for a given sheetside, i.e., the actual time required for rasterization becomes known. Immediately following a
sheetside completion, a control message is sent to the head node informing it of the completion. The head node then updates
the recurrence equation for calculating the completion time of any subsequent sheetsides with this new information, thus,
the rasterization completion time estimates become more accurate. As a result of these updates, the minimum rasterization
completion time workstation for a given sheetside may change over time, i.e., the heuristic choice is time dependent.

MRCT begins by calculating the tjcomp½Sk$ values for the sheetside at the head of the head node input queue ðSkÞ for all of the
workstations in the system. Workstations are then ranked in ascending order according to their tjcomp½Sk$ values and placed
together in a table in that order.

Afterwards, MRCT creates the table for ranking workstations for Sk. If there is room in the input buffer of the highest
ranked workstation j, i.e., ACj

in P sizeðSkÞ and jKj < Q , and there is a free slot in the transmit queue, then Sk is assigned
to the selected workstation and placed in the transmit queue. If any of the required conditions is not satisfied, then the con-
ditions will be satisfied some time in the future. As each workstation completes a sheetside, the table for Sk is updated and
reordered.

Because the execution time estimates for rasterization are known to be estimates of the actual execution times, the heu-
ristic must account for cases where the estimated rasterization completion time for Sk is significantly under-estimated. For
an under-estimated rasterization completion time to be significant, another workstation in the system must have a smaller
or equivalent completion time for Sk compared to the actual rasterization completion time that has been under-estimated.
The time at which the under-estimate for Sk becomes significant is referred to as the invalidation time for workstation j, de-
noted INVTj.

To calculate INVTj, the head node uses the rasterization completion notifications that it receives from each workstation.
Because of this feedback, the head node can calculate the earliest expected feedback time ðEEFTjÞ for the completion of the
sheetside currently being rasterized on workstation j, using the start time of the rasterization and the expected rasterization
execution time. Using EEFTj and the estimated completion time for Sk on workstation ðjÞ that is estimated to complete it
soonest and the next best workstation ðxÞ, the invalidation time for a given workstation j ðINVTjÞ can be calculated as follows:

INVTj ¼ EEFTj þ txcomp½Sk$ " tjcomp½Sk$
! "

: ð9Þ

That is, if at time INVTj the current sheetside being rasterized on workstation j has not completed, it has exceeded its esti-
mated completion time ðEEFTjÞ by an amount ðtxcomp½Sk$ " tjcomp½Sk$Þ that now must make workstation x the best choice for Sk.

Once the ordering of workstations has been established, the INVTj values can be calculated for each of the workstations. If
any of the INVTj values are in the past, then the corresponding workstations are ‘‘invalidated.” The MRCT heuristic will not
consider any workstations during allocation that are currently invalidated, i.e., while a workstation is marked as invalid no
sheetsides will be assigned to it. When feedback regarding a sheetside completion on workstation j is received, the
EEFTj; tjcomp½Si$, and INVTj values for the associated workstation are recalculated and the invalidation status of the workstation
is reset to valid. The MRCT heuristic is summarized in Fig. 3.

Fig. 3. Pseudo-code for assigning sheetside Sk at the head of HNIQ at time t in the MRCT heuristic.
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5. Bitmap lifetime

In general, the primary goal of the system is to ensure that all incoming sheetsides are rasterized and available by their
deadline for display. To assess whether a sheetside is available by its deadline, we defined a new measure known as ‘‘bitmap
lifetime.” Bitmap lifetime is measured as the time difference between when the rasterized image is made available in some
workstation’s output buffer and when the raster display consumes the image from the system, i.e., the amount of time that a
bitmap lives in an output buffer of the system before it is displayed.

When the bitmap lifetime is greater than tbitmap
tran , the bitmap will arrive in time to be displayed without disrupting the sys-

tem. If lifetime of a bitmap is not greater than tbitmap
tran , then the bitmap will not arrive in time to be displayed by its deadline,

and the system is disrupted. To represent this in our simulations, we say that whenever a bitmap lifetime is not greater than
tbitmap
tran , it is given the value tbitmap

tran and will cause a system disruption.
The MRCT heuristic attempts to minimize the rasterization completion time of a sheetside Sk based on its most current

estimates of the system state. Alternatively, we can view this minimization as an attempt to maximize the bitmap lifetime of
Sk. Because the deadline for the completion of each sheetside is fixed relative to t0, by minimizing the estimated completion
time for each sheetside we are maximizing the difference between the deadline for a sheetside and its completion time.

6. Quantifying robustness

6.1. Overall robustness metric

To derive a robustness metric suitable for this environment, we follow the FePIA procedure presented in [1]. In step 1 of the
FePIA procedure, we describe quantitatively the requirement that makes the system robust. Intuitively, the system is robust if
no service interruptions occur. That is, the performance measure of interest in this system is the completion time of each
sheetside. If the completion time for each sheetside is less than its deadline, then the system can be considered to be robust.

In step 2, we identify the uncertainty in system parameters that may impact our performance feature of interest. In this
system, there are two sources of uncertainty in system parameters that may cause our rasterization completion times to in-
crease (possibly violating our robustness requirement). First, we have assumed throughout this work that our rasterization
execution time estimates may differ substantially from actual rasterization execution times. Second, the arrival order of
sheetsides to the system is unknown. That is, we do not know in advance when complex sheetsides will arrive for
rasterization.

Step 3 of the FePIA procedure requires that we identify the impact of uncertainty in system parameters on our perfor-
mance feature of interest. In this case, rasterization completion time estimates are created based on a sum of rasterization
execution estimates that each may contain errors. Consequently, the uncertainty in rasterization execution times will di-
rectly impact rasterization completion time estimates.

The last step is to conduct an analysis to determine the smallest collective change in assumed values for system uncer-
tainty parameters (from step 2) that would cause the performance feature of step 1 to violate the robustness requirement. To
determine the robustness of an overall resource allocation, we will first quantify the robustness of the completion time esti-
mate for a single sheetside BQj

i. Let B
j
i be the set of sheetsides pending on workstation j before and including BQj

i. The ras-
terization execution time estimates for any of the sheetsides in Bj

i may be a source of uncertainty in calculating the
rasterization completion time estimate for BQj

i. The completion time estimates for these sheetsides are coupled because they
are executed sequentially on the same workstation. That is, if the rasterization time of the first sheetside is longer than ex-
pected, then this will impact the completion time calculations for each of the subsequent sheetsides on that workstation.

From [1], we can use a geometric interpretation of our robustness requirement where the rasterization completion time
estimate is a single point in anN-dimensional space. Each of theN dimensions in this space corresponds to a member of Bj

i
and we wish to find the smallest distance from our rasterization completion time estimate to the surface defined by our
robustness requirement. This distance defines the smallest collective increase in assumed system parameters that would
cause our robustness requirement to be violated (based on a Euclidean distance). Because the completion time estimates
for each sheetside are coupled, the true geometric interpretation of the robustness requirement must be expressed as an
N dimensional surface. Without knowing the exact shape of this surface, we cannot calculate the shortest distance from
our known point to the surface. Thus, to calculate this distance in our Robust MRCT heuristic (presented in Section 6.2,
we have chosen to approximate this surface by a hyperplane. Using the equation for the distance from a point to a hyper-
plane [1] we can find the robustness of the completion time for sheetside BQj

i given a current assignment of sheetsides l at
time t, denoted rlðBQj

i; tÞ as:

rl BQj
i; t

! "
¼

td BQj
i

h i
" tjcomp BQj

i

h i

ffiffiffiffiffiffi
Bj

i

q : ð10Þ

To find the overall robustness of a resource allocation at time t, we identify the smallest robustness value for each work-
station and then compare this smallest value across all workstations. We combine the rlðBQj

i; tÞ values for all B
j
i at time t to

form the robustness metric for workstation j at time t, denoted qj
lðtÞ, as follows:
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qj
lðtÞ ¼ min

8i2Bj
i

rl BQj
i; t

! "n o
: ð11Þ

The smallest of the qj
lðtÞ values over all workstations defines the local robustness value for the system at time t. That is,

qlðtÞ ¼ min
8j

qj
lðtÞ

n o
: ð12Þ

Because any service interruption is unacceptable in this environment, we have chosen to use the smallest local robustness
value encountered throughout a simulation run as the overall robustness metric. Formally, we can express the overall robust-
ness metric value for a particular resource allocation in this system as:

ql ¼ min
8t

qlðtÞ
n o

: ð13Þ

6.2. Robust MRCT

The robustness of each sheetside completion time estimate can be used during resource allocation to aid in selecting the
best workstation to process a given sheetside. In the MRCT heuristic presented earlier, we can replace the rasterization com-
pletion estimate determined for each workstation with the robustness metric.

If we compare the bitmap lifetime metric with robustness, then we can see that the numerator in the robustness Eq. (10)
is actually an estimate of bitmap lifetime at time t. The fundamental difference between the two calculations is the denom-
inator of the robustness equation that attempts to account for the multiple uncertainty parameters in the bitmap lifetime
estimate. However, in this environment, because the number of sheetsides that can be buffered in the input queue of each
workstation is limited, the magnitude of the denominator in the robustness equation is also limited.

7. Simulation setup

To evaluate our heuristics, we created a simulation model of a real printing system using the OpNet simulation environ-
ment [16]. Each simulation run consisted of a rasterization job that included on the order of 100,000 sheetsides. The OpNet
simulation was executed with a head node connected by a gigabit ethernet network to six heterogeneous workstations. The
workstations are connected to the two raster display devices by a four gigabit fiber channel. It is assumed that the raster
display device requires 0.11 s to display each output bitmap.

Each sheetside rasterization time estimate is modeled by sampling one of two normal distributions. The first distribution
was chosen to have a mean of 0.01 s and a standard deviation of 20% of the mean. The second distribution was chosen to have
a mean of 0.85 s and a standard deviation of 20% of the mean. In our simulations, the ratio of 0.85 s sheetsides to 0.01 s sheet-
sides was chosen such that the average rasterization time was 0.22 s. This average rasterization time was chosen to match
the processing time required to output a single bitmap from each display device. Using the chosen ratio of sheetsides, for
every rasterization time sampled from the 0.85 s mean distribution there are three sheetsides selected from the 0.01 s mean
distribution.

For comparison, we implemented a round-robin heuristic that was run on identical simulations to that of our MRCT heu-
ristic and Robust MRCT heuristic. Round-robin tries to assign the same number of sheetsides to each workstation in the clus-
ter by defining an arbitrary fixed ordering of the workstations and repeatedly assigning one sheetside to each workstation in
the ordering as buffer sizes permit [22]. If there is insufficient capacity in the input buffer of any workstation j or there are
greater than Q sheetsides in the input buffer already, then round-robin waits until both of these conditions are satisfied on
workstation j so that the machine ordering is obeyed. Consequently, round-robin ignores the current workload on each of the
workstations, instead relying on a strict ‘‘balanced” ordering of sheetside assignments to fairly assign the workload among
machines.

Although the simulation study did not attempt to directly evaluate a startup strategy for starting the displays, the sim-
ulation required some startup to begin execution. For this simulation study, we chose a simplistic strategy where the sheet-
sides are allocated to workstations in a round-robin fashion, prior to starting the displays, until all of the workstation output
buffers are full. At this point, the displays are turned on and the centralized image dispatcher begins to use one of the three
studied heuristics to allocate the remaining sheetsides for the remainder of the simulation: Round-Robin, MRCT, or Robust
MRCT.

8. Simulation results

Fig. 4 presents the results of the simulation study in terms of bitmap lifetime. The x axis of each plot represents the sim-
ulation time in seconds and the y axis represents the bitmap lifetime in seconds. The plots show the bitmap lifetime values
for each bitmap consumed by the system. As described in Section 5, if the lifetime of a bitmap is not greater than tbitmap

tran , then
the display device will have to stop to wait for the bitmap to become available—which is unacceptable in practice. In a large
scale production printing environment, the paper where the raster device is displaying the images cannot be immediately
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Fig. 4. Sample plots of the results for the three heuristics (a) round-robin, (b) MRCT, and (c) Robust MRCT.
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stopped to wait for bitmaps to become available. Attempting to abruptly stop the paper may ruin the result, e.g., by tearing
the paper.

In each of the plots of Fig. 4, at the beginning of each simulation the bitmap lifetimes are high relative to the mean bitmap
lifetime. These artificially high values occur before t0, i.e., during this time the displays have not started to consume bitmaps.
Thus, the initial bitmap lifetimes are equal to the time required to fill up the output buffers on all of the workstations prior to
starting the display device.

The simulation required that each heuristic rasterize the same number of sheetsides on the same set of workstations (four
in this study), where the output was consumed by two displays. The round-robin heuristic is able to complete the entire run
in only slightly more time than both of the MRCT heuristics, however, it did experience a significant number of service inter-
ruptions as a result of its allocation decisions. Recall that in a high-speed printing environment any interruption is consid-
ered catastrophic. In contrast, the MRCT heuristic based on bitmap lifetime is able to complete the entire run with no
interruptions. For the MRCT heuristic, bitmap lifetimes were in the range of [1.6 s,16 s] throughout the simulation. These
results demonstrate the utility of the mathematical model to estimate rasterization completion times within the context
of a resource allocation heuristic.

Finally, the results of our Robust MRCT heuristic surpass that of the bitmap lifetime based MRCT heuristic, as can be seen
by comparing the plots of the two heuristic results. That is, the mean bitmap lifetime for sheetsides in the Robust MRCT heu-
ristic is higher than that of the MRCT heuristic. This implies, that the Robust MRCT heuristic is capable of tolerating more
additional complex sheetsides without interrupting service than the bitmap lifetime based MRCT heuristic. In our simula-
tions, the time required to calculate the robustness value during execution of the Robust MRCT heuristic was negligible. Be-
cause the Robust MRCT heuristic uses the same rasterization completion time model as MRCT, the improvements of Robust
MRCT can be solely attributed to the use of robustness in the heuristic in place of bitmap lifetime.

9. Related work

According to the literature, the problem of workload distribution considered in our research falls into the category of dy-
namic resource allocation, assuming that multiple invocations of a resource allocation heuristic are overlapped in time with
task arrivals. The general problem of dynamically allocating a class of independent tasks onto heterogeneous computing sys-
tems was studied in [13]. The primary objective in [13] was to minimize system makespan, i.e., the total time required to
complete all tasks sent for mapping. This objective is very different from the primary objective in our work: complete ras-
terization of each sheetside in a given job before its assigned deadline. Our MRCT heuristic attempts to map each sheetside to
its estimated minimum rasterization completion time workstation, which is analogous to the MCT heuristic of [13] attempt-
ing to map each task to its minimum completion time machine. However, the method of computing a completion time in
[13] does not take into account the impacts of buffering tasks, communication links, etc. Furthermore, that study assumes
no deviation of the actual time to compute a task from its estimated time to compute (ETC) value, i.e., the performance pre-
dicted by a resource allocation heuristic is assumed to match the actual performance. In our simulations, the heuristics are
provided with estimated execution times that can differ from the ‘‘simulated actual” execution times. In our MRCT approach,
rasterization completion time estimates for a sheetside are continuously updated with the most current information regard-
ing the ‘‘simulated actual” sheetside completion times.

In [14], an end-to-end quality of service system is described for a distributed real-time embedded system. The authors
define quality of service within an embedded system loosely as, ‘‘how well an application performs its function.” The authors
advocate an approach where resource allocation decisions are dynamically adapted to changes in the environment based on
the coordinated monitoring and control of constrained system resources. Our work is an application of this methodology
within a specific real-time imaging system. In the terminology of [14], the resource management techniques of our research
are appropriate for use in the System Resource Manager role of the multi-layer resource management architecture.

In [10], a number of resource allocation heuristics for a class of independent tasks were tested on a homogeneous cluster
of eight DEC Alpha workstations running Digital Unix. The set of presented heuristics includes the following five: round-ro-
bin; round-robin with clustering; minimal adaptive; continual adaptive; and first-come first-served. None of these heuristics
built a prediction model.

The robustness requirement in this work differs substantially from our earlier work on robustness in a dynamic environ-
ment [15]. In [15], the robustness requirement was expressed in terms of the overall resource allocation, i.e., expressed in
terms of the entire allocation. In this work, each sheetside has an individual deadline, thus, the robustness metric must
be expressed in terms of individual sheetsides. In [20], each dynamically arriving task is assigned its own deadline relative
to its arrival time. However, that work assumes that stochastic information is available regarding the possible execution
times of tasks. In this environment, we are only provided with a deterministic estimate of task execution times and this sto-
chastic information is unavailable.

10. Conclusion

The goal of this research was to rasterize dynamically arriving sheetsides (i.e., execute tasks) before an assigned deadline
for each sheetside so that service interruptions can be avoided during execution. We presented a mathematical model suit-
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able for determining an estimate of rasterization completion times in a dynamic environment where task execution times
are uncertain. We used the mathematical model to design the MRCT resource management heuristics that clearly outper-
formed a commonly used approach, i.e., round-robin. Further, this mathematical model was used as the basis for deriving
a robustness metric suitable for this environment. We presented an extension of our MRCT heuristic, Robust MRCT, that suc-
cessfully utilized this robustness metric during resource allocation to surpass the results of our bitmap lifetime based
approach.
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Appendix.

Glossary of notation.

ACj
in Available capacity of the input buffer of workstation j

Bj
i Set of sheetsides pending on workstation j

BQj
i ith sheetside to have entered the input queue of workstation j

CAPj
in Input buffer capacity of workstation j

CAPj
out Output buffer capacity of workstation j

Dout BQj
i

h i
Delay to begin processing sheetside BQj

i

EEFTj Earliest expected feedback time for workstation j

ERT BQj
i

h i
Estimated rasterization time for sheetside BQj

i

HNIQ Head node input queue
INVTj Invalidation time for workstation j
K Sequence of sheetsides that are in the input buffer of workstation j
M Number of heterogeneous dedicated workstations
l Current allocation of sheetsides to workstations
N Number of bitmaps that can be placed in the output buffer of a given workstation
numðBQj

iÞ Absolute sheetside number of sheetside BQj
i, i.e., Sk

Q Maximum number of sheetsides allowed in an input buffer
rlðBQj

i; tÞ Robustness of the completion time for sheetside BQj
i given assignment l at time t

ql Overall robustness metric value given assignment l
qj
lðtÞ Robustness metric for workstation j given assignment l at time t

Sk kth sheetside of the job
sizeðSiÞ Size in bytes of the pdl for sheetside i
t0 Absolute wall-clock start time for both display devices

tbitmap
tran Transfer time from any workstation to either display device

tjcomp BQj
i

h i
Estimated rasterization completion time for sheetside BQj

i on workstation j

td½Sk$ Wall-clock deadline for completing sheetside Sk

txdept½Sk"1$ Departure time of Sk"1 from HNIQ to workstation x

tdisplay Time required to display a bitmap on the device

tstart BQj
i

h i
Earliest possible rasterization start time for sheetside BQj

i

tsdftran½Sk$ Time required to transfer the sheetside description file for sheetside Sk

jTQ j Number of sheetsides in head node transmitter queue
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