
Energy-Constrained Dynamic
Resource Allocation in a Heterogeneous

Computing Environment
B. Dalton Young1, Jonathan Apodaca2, Luis Diego Briceño1, Jay Smith1,3, Sudeep Pasricha1,2,

Anthony A. Maciejewski1, Howard Jay Siegel1,2, Bhavesh Khemka1, Shirish Bahirat1,
Adrian Ramirez1, and Yong Zou1

Colorado State University 3DigitalGlobe
1Department of Electrical & Computer Engineering Longmont, CO 80503, USA

2Department of Computer Science
Fort Collins, CO 80523-1373, USA
E-Mail: dalton.young@colostate.edu

Abstract—Energy-efficient resource allocation within
clusters and data centers is important because of the
growing cost of energy. We study the problem of energy-
constrained dynamic allocation of tasks to a heterogeneous
cluster computing environment. Our goal is to complete as
many tasks by their individual deadlines and within the
system energy constraint as possible given that task execu-
tion times are uncertain and the system is oversubscribed
at times. We use Dynamic Voltage and Frequency Scaling
(DVFS) to balance the energy consumption and execution
time of each task. We design and evaluate (via simulation)
a set of heuristics and filtering mechanisms for making
allocations in our system. We show that the appropriate
choice of filtering mechanisms improves performance more
than the choice of heuristic (among the heuristics we
tested).

I. INTRODUCTION AND PROBLEM STATEMENT

Energy consumption of servers and data centers is
a growing concern (e.g., [BoE02,Koo07]). Some stud-
ies predict that the annualized cost of powering and
cooling servers may soon exceed the annualized cost of
equipment acquisition [KoB09], which could force some
servers to operate under a constraint on the amount of
energy used to complete workloads.

In this research, we study the problem of dynami-
cally allocating a collection of independent tasks to a
heterogeneous computing cluster (heterogeneous both
in terms of performance and power efficiency) while
considering energy. We assume that the system is often
oversubscribed, as is the case for the Oak Ridge National
Labs Extreme Scale Systems Center system under devel-
opment [BrK11]. The goal is to maximize the number
of tasks completed by their individual deadlines under
a constraint on the total amount of energy used by the

This research was supported by the National Science Foundation
under grant number CNS-0905339, and by the Colorado State Univer-
sity George T. Abell Endowment. This research used the CSU ISTeC
HPC System supported by NSF Grant CNS-0923386.

system. Our problem formulation is more complex than
earlier approaches because we consider the combination
of a heterogeneous cluster, a time-varying arrival rate
for tasks that causes the system to be oversubscribed
at times, tasks with individual deadlines, stochastic task
execution times, an energy constraint to process a fixed
number of tasks, and using the concept of robustness
(described in Section IV) in the objective functions of
some heuristics.
We approach this problem by deriving resource alloca-

tion heuristics and filtering mechanisms that are capable
of leveraging the cluster heterogeneities to maximize the
number of tasks completed under a given energy con-
straint. We then compare these heuristics via simulation.
Two of our heuristics are adapted from the literature to
our environment, while the third is a novel heuristic that
attempts to balance each task’s energy consumption and
probability of completing by its deadline. Additionally,
our two filter mechanisms can be generically applied to
any heuristic to add energy-awareness and/or robustness-
awareness. Our workload (described in Section III-B)
consists of a dynamically-arriving mix of different task
types (e.g., compute-intensive, memory-intensive). Our
system is oversubscribed at times, so we cannot utilize
certain energy-conserving techniques (described in Sec-
tion III-A). Thus, our heuristics and filters are limited
to controlling energy consumption via task-to-machine
mapping and processor Dynamic Voltage and Frequency
Scaling (DVFS).

In this paper, we make the following contributions: (a)
we develop a model of robustness for this environment
and validate its use in allocation decisions, (b) we
present an adaptation of two existing heuristics to utilize
robustness and account for an energy constraint while
making task-to-machine assignments, (c) we present a
new heuristic for use in our environment, and (d) we

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.58

300

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.58

300

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.58

298

demonstrate the utility of our generalized filter mech-
anisms via simulations, which show at least a 13%
improvement in each heuristic due to filtering.

The remainder of this paper is organized as follows.
The next section discusses a sampling of the most
closely-related work. In Section III, we define the model
of the compute cluster, workload, and energy consump-
tion of the system. Based on this system model, we
formally introduce the concept of robustness and derive
a robustness measure suitable to this environment in Sec-
tion IV. Section V describes the heuristics used in this
study. Section VI then discusses our simulation setup,
while Section VII presents and analyzes our simulation
results. We conclude with Section VIII, wherein we
discuss extensions to this research and future directions.

II. RELATED WORK

The problem of mapping dynamically-arriving tasks
under an energy constraint is addressed in [KiS08]. That
work focused on conserving battery life in an ad-hoc
grid environment while completing as many high-priority
tasks as possible, followed by as many low-priority
tasks as possible. The environment in [KiS08] also used
a bursty environment with oversubscription. However,
our study is fundamentally different because we work
with probability distributions representing uncertain task
execution times, whereas the work in [KiS08] used scalar
task execution times. Also, our study focuses on a cluster
environment with a single energy constraint, where the
work in [KiS08] focused on an ad-hoc grid with energy
constraints on a per-component basis.

The research in [XiL08] uses Dynamic Voltage and
Frequency Scaling (DVFS) within a real-time system
where the tasks have uncertain execution times. Unlike
our study, there is no energy constraint and the system
is not oversubscribed. The work in [XiL08] also empha-
sizes the benefits of inter-task DVFS to take advantage
of slack time, but our system is oversubscribed at times.
Similarly, the research in [YuV08] attempts to maximize
a mathematical model of Quality of Service (QoS) under
an energy constraint, but it does so using DVFS to take
up slack time in an undersubscribed system, whereas our
system is oversubscribed some of the time.

In [AyM01], the authors use a multi-part solution to
save energy in a dynamic, real-time system with periodic
tasks. Like [AyM01], our environment is dynamic, but
it is also oversubscribed. Additionally, we have the
goal of completing as many tasks by their deadlines as
possible under an energy constraint, whereas the study
in [AyM01] has the goal of minimizing energy under the
constraint of completing all tasks by their hard deadlines.
Also, the solution in [AyM01] utilizes a static compo-
nent to develop its schedules, while our heuristics are

limited to immediate-mode operation (tasks are mapped
immediately upon arrival [MaA99]).

Similarly, in [KiB07] a set of independent tasks with
individual deadlines are dynamically allocated to a clus-
ter while attempting to conserve energy. Where [KiB07]
attempts to optimize the energy consumed under the
constraint of completing all tasks by their deadlines, our
environment has an energy constraint and we optimize
the number of tasks completed. The work in [KiB07]
uses deterministic task execution times and constant
arrival rates with an undersubscribed system, where our
research focuses on stochastic task execution times and a
bursty arrival rate with the system oversubscribed during
task-arrival bursts.

This group has previously studied dynamic resource
allocation in [SmA10,SmC09]. This research uses some
heuristics from [SmC09] and part of the robustness
definition from [SmA10]. However, neither of these
previous works deal with energy-aware scheduling. We
have also studied the static allocation of independent
tasks with a common deadline to optimize the energy
consumed in [ApY11].

III. SYSTEM MODEL

A. Cluster Configuration

Our model of a cluster allows the performance and
power efficiency of each node in the cluster to vary sub-
stantially. That is, the system is heterogeneous because
it may consist of compute nodes that are quite different
from one another. Machine performance is defined in
terms of the time required to execute a given task, i.e., a
higher performance machine will execute a task in less
time than a lower performance machine. The machine
performance of the nodes in this cluster is assumed to be
inconsistent [AlS00], i.e., because machine A is faster
than machine B on one task does not imply that machine
A is faster for all tasks.

Our model assumes that a cluster consists of N

heterogeneous compute nodes, each with a different
number of multicore processors, different number of
cores in each multicore processor, different set of avail-
able processor frequencies, different power consump-
tion profile, and different power supply efficiency. Each
compute node i consists of n (i) multicore processors,
where n (i) varies from one to four among nodes. Each
multicore processor in compute node i has c (i) cores,
where c (i) varies from one to four among nodes. Figure
1 shows the hierarchy of nodes, multicore processors,
and cores within our cluster.
We assume that each core k in multicore processor j

processes tasks independently of the other cores, and all
cores and multicore processors within a given compute
node are homogeneous. In this study, we limit the size of
our cluster to eight compute nodes (N = 8) to limit our

301301299

simulation execution times, but our proposed techniques
can be easily extended to larger clusters of nodes.

Our hierarchical cluster model is directly applicable
to the ISTeC Cray XT6m system currently in use at
Colorado State University [CSU11]. While the current
system is homogeneous across compute nodes, there are
plans to add GPUs to a limited subset of the compute
nodes as well as to continually grow the system with
new compute nodes based on the technology available
at the time of purchase. Thus this system will indeed be
heterogeneous and follow our hierarchical model.

Fig. 1. The hierarchy of nodes, multicore processors, and cores that
are used in our system model.

Our model of available processor frequencies and
processor power consumption is based on the ACPI
standard [Hew10]. The standard defines P-states, which
are processor performance states that allow the processor
to save power while executing instructions at the expense
of decreased performance, i.e. increased task execution
times. These states are used in DVFS implementations
in many commodity processors (e.g., [Adv10b,Int10]).

Because our system is oversubscribed at unpredictable
time intervals, we cannot turn nodes off. Thus, we
assume that the energy consumed by the shared system
components of each node (such as disk drives and
fans) is constant within each node and can therefore
be excluded from our computations (subtracted from the
energy constraint before any tasks are scheduled). In this
way, we are assuming that only the P-states can be used
to save power.

The ACPI standard defines up to 16 P-states, but
we will assume that a set of only five, denoted P ,
is available: P0, P1, P2, P3, and P4. Each P-state is
associated with a certain clock speed and voltage con-
figuration for a core that defines its corresponding power
consumption. We will assume that, as power supplied to
a core is increased, the performance of the core also will

increase. Following convention [Hew10,Adv10c], let P0

correspond to the base P-state that provides the highest
power consumption (and therefore highest performance),
and P4 correspond to the P-state that provides the lowest
power consumption (and therefore lowest performance).
Power consumption in real systems can vary within a
given P-state. For this study, we make the simplifying
assumption that the power consumption of a core oper-
ating in a given P-state can be approximated by a scalar
constant that represents the average power consumption.
The power consumed by P-state π in any core (because
we assume that all cores and multicore processors within
a compute node are identical) of compute node i is
denoted μ (i, π). We will discuss the values of μ (i, π),
as well as the relative performance of the cores in each
P-state, in Section VI.

In our environment, the resource management system
controls the P-states of each core individually. The
operating system of each compute node provides a power
management kernel that controls the P-state transitions
for each core within each multicore processor, and we
assume that cores within a multicore processor can
switch P-states independently [Adv10c]. In this research,
we assume that there is a cluster resource manager
integrated with the operating system power manager so
that the cluster resource manager can direct the power
management kernel to change P-states, and that P-state
transition times can be ignored because they are small
(hundreds of microseconds [Adv10c]) with respect to
task execution times (e.g., thousands of milliseconds).
We also assume that cores can only change P-states when
idle, i.e., P-states cannot be transitioned during task
execution. The cluster resource manager will execute
our resource allocation heuristics and take responsibility
for controlling the power consumption of the cluster—in
addition to assigning tasks to cores for execution.

Within a node of the cluster, power efficiency relates
the total power provided by a power supply to the
actual power it consumes. For example, a power supply
with 90% efficiency supplies 90 watts of power to the
elements of the node for every 100 watts of power
it consumes. We assume that the efficiency of power
supplies varies between nodes from at least 90% efficient
to at most 98% efficient, and we denote the power
efficiency of the power supply in node i as ε (i).

B. The Workload

The workload in the environment in our model is
a dynamically-arriving collection of independent tasks,
i.e., the exact task mix is unknown prior to its arrival.
However, each task is selected from a finite collection of
well-known task types (such as may be found in many
military, lab, government, and industrial environments).
The different task types may stress different parts of the

302302300

system, i.e., some task types may be compute-intensive,
others may be memory-intensive, etc.

In the workload, the execution time of each task is
considered stochastic due to factors such as varying
input data or cache conflicts, and that we are provided
an execution-time probability mass function (pmf) for
each task type executing on a single core of each
node in each P-state (such pmfs may in practice be
obtained by historical, experimental, or analytical tech-
niques [LiA97,Was05]). More specifically, we model the
execution time of each task type as a random variable
and assume that we are given a probability mass func-
tion describing the possible execution time values and
their probabilities for each task type, core, and P-state
combination. We also assume that power consumption is
a function of P-state and processor.

Our workload is characterized by a bursty arrival rate
[LiB98], which will cause the system to be oversub-
scribed during burst periods and undersubscribed at other
times. We assume that we are provided a deadline for
completing each task z, denoted δ (z), i.e., δ (z) defines
a constraint on the completion time of task z. In a real
system, task deadlines can come from multiple sources
(e.g., limits set by system administrators, user require-
ments for timely data). Each deadline is considered a
hard deadline, and there is no value in completing a task
after its deadline has passed (i.e., the task is not counted
as completed if its deadline is missed). This is simiilar
to the system under development at the Extreme Scale
Systems Center at Oak Ridge National Lab [BrK11].
We assume our cluster resource manager cannot stop a
task after it has been scheduled and must execute it to
completion as a best-effort basis, even if the task misses
its deadline. We will describe our deadline and arrival
rate models in more detail in Section VI.

The workload must consist of a finite number of tasks
if an energy constraint is to be imposed. We test our
heuristics over a “window” of 1,000 tasks. We assume
that our resource management heuristics can make al-
location decisions that take into account the number of
tasks remaining in a “window.” We also assume that our
heuristics can query a processor for the number of tasks
currently awaiting execution.

We limit our cluster resource manager to operating in
an immediate-mode [MaA99]. Additionally, we assume
that tasks cannot be reassigned, either to a new core or
a new P-state, once they are mapped. Task mapping is
controlled by the resource allocation heuristic employed
by the cluster resource manager.

C. Energy Consumption

As the tasks are independent and cores can change
their P-states independently of one another, we can find
the energy required by each core throughout the entire

simulation independently of the other cores (recall that
disk and memory energy requirements are treated as
a constant and are therefore not included here). We
can then find the total energy required by the cluster
by summing the energy required by all cores. Because
we assume that cores cannot be turned off, the energy
consumption for each core can be found by identifying
the time of each P-state transition, calculating the time
difference between successive transitions, and multiply-
ing this time difference by the power required to support
that P-state.

Let ν (i, j, k) denote the list of P-state transitions
that are scheduled for core k of multicore processor j
in node i throughout the execution of the workload,
let |ν (i, j, k) | denote the size of list ν (i, j, k), let
ν (i, j, k, n) denote the nth P-state transition in list
ν (i, j, k), let time(x) denote the time of P-state tran-
sition x, and let pstate(x) denote the ending P-state
for the transition. We assume that each core makes
at least two P-state transitions, one at the start of
workload execution and one at the end of workload
execution. If we define Δt (n) = time (ν (i, j, k, n))−
time (ν (i, j, k, n − 1)), we can compute the energy used
by each core, which we denote η (i, j, k), as

η (i, j, k) =

|ν(i,j,k)|∑

n=1

μ (i, pstate (ν (i, j, k, n)))×

Δt (n) .

(1)

Using the energy needed by each core (η (i, j, k)) from
Equation 1, we can find the energy required to complete
the entire workload, which we denote ζ, as

ζ =
N∑

i=1

n(i)∑

j=1

c(i)∑

k=1

η (i, j, k)

ε (i)
. (2)

We let ζmax denote the energy constraint for completing
the workload.

IV. ROBUSTNESS

A. Overview

We use random variables to model task execution
times because the actual execution time of each task
is uncertain [SmS09]. We want our resource allocations
to be “robust,” meaning that they mitigate the impact
of uncertainties on our performance objective [AlM04].
More specifically, we want our resource allocations to
mitigate the impact of the uncertain task execution
times on our objective of completing as many tasks as
possible, by their individual deadlines, within our energy
constraint. This research builds on the robustness model
presented in [SmA10].

When a system is described as robust, three questions
must be answered [AlM08]: (1) What behavior makes

303303301

the system robust? (2) What uncertainties is the system
robust against? (3) How is the robustness of the system
quantified? In our system model, an allocation is robust if
it can complete all tasks by their individual deadlines; an
allocation is robust against uncertainties in task execution
times; and the robustness of an allocation is quantified
as the expected number of tasks which will complete by
their deadlines.

B. Stochastic Task Completion Time

At the lth time-step tl, we want to predict the com-
pletion time of a task z if it is assigned to a core
k in multicore processor j of node i. Calculating this
completion time requires combining the execution times
for all tasks that have been assigned to core k with the
execution time of z. When using a deterministic (i.e.,
non-probabilistic) model, we calculate the completion
time as the sum of the estimated execution times for all
tasks assigned to core k, the estimated execution time
for task z if assigned to core k, and the ready time of
core k. Because we are using a stochastic model (task
execution times are represented by pmfs), we calculate
the completion time as the sum of the random variables
represented by the pmfs and the ready time. This sum
requires a convolution of pmfs [Leo89,PhP03]. Convo-
lutions can take considerable time, but the overhead can
be negligible if task execution times are sufficiently long
or the performance gained justifies their usage.

Let Q (tl) be the set of all tasks that are either
queued for execution or are currently executing on any
of the cores in the cluster at time-step tl. To determine
the completion time of task z if assigned to core k
of multicore processor j on node i at time-step tl, we
first identify the ordered list of tasks in Q (tl) that are
assigned to core k, in order of their assignment to core
k, and we let Q (i, j, k, tl) denote this list. If there are
no tasks assigned to core k, then Q (i, j, k, tl) = ∅, and
the ready time of this core is equal to the current time.
In this case, the stochastic completion time of task z if
assigned to core k is represented by the execution-time
pmf of task z on core k in its chosen P-state, shifted by
the current time.

If Q (i, j, k, tl) �= ∅, then the execution time pmf
for the currently executing task a on core k (the first
task in Q (i, j, k, tl)) requires additional processing prior
to its convolution with the pmfs of the queued tasks
(other tasks in Q (i, j, k, tl)). If a began execution at
time-step th (h < l), some of the impulse values of
the pmf describing the completion time of a are in
the past. Therefore, accurately describing the completion
time of task a at time tl requires shifting the execution-
time distribution for task a by th (effectively creating
the completion-time distribution for task a if it started
execution at time th), removing the past impulses from

the pmf (those impulses which occur at time less than tl),
and re-normalizing the remaining distribution [SmC09].
After renormalization, the resulting distribution describes
the completion time of a on core k as predicted at
time-step tl. This distribution is then convolved with the
execution time pmfs of the tasks in Q (i, j, k, tl) and the
execution-time pmf of task z on this core in its chosen
P-state to produce the completion-time pmf for task z if
assigned to core k at the current time-step tl.
The above computations can be applied to any task

in Q (i, j, k, tl) to obtain a completion-time distribu-
tion. The completion-time distribution for the currently-
executing task a on core k, for example, can be found
by shifting the execution-time distribution of a assigned
on core k by its start time, removing impulses at time
values less than tl, and re-normalizing the distribution.
The completion-time distribution for task b assigned
immediately after task a on core k can then be found
by convolving the execution-time distribution of task b
assigned on core k with the completion-time distribution
of task a.

C. Robustness Calculation

The robustness of a resource allocation in this environ-
ment is defined at a given time-step tl as the expected
number of tasks that will complete by their individual
deadlines, predicted at tl [SmA10]. We denote this value
ρ (tl). Because there is no inter-task communication
in our cluster environment (all tasks are independent),
the expected number of on-time task completions for
all tasks assigned to a common core k of multicore
processor j in node i (all tasks in Q (i, j, k, tl)) is inde-
pendent across all cores and nodes. We let ρ (i, j, k, tl)
denote this value. If we let ρ (i, j, k, π, tl, q) denote
the probability of task z in Q (i, j, k, tl) with P-state
π finishing by its deadline δ (z), then we can compute
ρ (i, j, k, tl) as

ρ (i, j, k, tl) =
∑

∀z∈Q(i,j,k,tl)

ρ (i, j, k, π, tl, z) . (3)

We can therefore calculate ρ (l) as

ρ (tl) =

N∑

i=1

n(i)∑

j=1

c(i)∑

k=1

ρ (i, j, k, tl) . (4)

To complete as many tasks as possible by their in-
dividual deadlines, the research in [SmA10] indicates
that we should maximize the expected number of on-
time completions (ρ (tl)) at each time-step [SmA10].
However, our system is limited to immediate-mode map-
ping. Therefore, if we are assigning a task z at time-
step tl, we can maximize ρ (tl) by assigning z to the
core k of multicore processor j in node i and P-state
π that maximizes ρ (i, j, k, π, tl, z) (assigning the task

304304302

where it has the highest probability of completing by its
deadline).

To find a task’s probability of completing by its dead-
line given a node, multicore processor, core, and P-state
assignment, we can merely find the completion-time
distribution for the assignments as described in Section
IV-B, and then sum the impulses in the distribution that
are less than the deadline. We will use this number in
our filters and heuristics.

V. HEURISTICS AND FILTERS

A. Overview

In this study, we adapted two task-scheduling heuris-
tics taken from the literature to our cluster environment.
We also created a new heuristic and implemented a
random-assignment heuristic. An assignment consists
of mapping a single task to a node, multicore pro-
cessor, core, and P-state. Each heuristic, operating in
an immediate-mode, assigns a single task to a node,
multicore processor, core, and P-state for execution.
We developed two filtering mechanisms that can be
generically applied to any task-scheduling heuristic to
limit the set of feasible assignments the heuristic may
use. A filtering mechanism could eliminate all potential
assignments, which would cause the task to remain
unassigned and be discarded.

We use several expectation operations because our
heuristics work with pmfs. For a task z executing on
core k of multicore processor j in node i and P-state
π, we compute the expected completion time (denoted
ECT (i, j, k, π, tl, z)) by taking the expectation of the
stochastic completion time distribution. Similarly, ex-
pected execution time (denoted EET (i, j, k, π, z)) is
found by taking the expectation of the execution-time
distribution for a task. The expected energy consumption
of an assignment (denoted EEC (i, j, k, π, z)) is found
by multiplying the expected execution time by the power
consumption of the core and P-state where the task
is assigned (μ (i, π)), and then dividing by the power
efficiency of the node where the task is assigned (ε (i)).

B. Shortest Queue Heuristic

The Shortest Queue (SQ) heuristic [SmC09] assigns
the incoming task to the core with the fewest tasks
currently assigned to it from among the feasible assign-
ments. When invoked at time-step tl, the heuristic finds
the number of tasks currently assigned to each core k
of multicore processor j in node i in the list of feasible
assignments (we denote this value |MQ (i, j, k, tl) |),
and then maps the arriving task to the feasible assign-
ment with the smallest value of |MQ (i, j, k, tl) |. If
multiple feasible assignments have the same minimum
queue length, then the heuristic assigns the task to the
core and P-state combination that has the minimum

expected execution time for the task (EET (i, j, k, π, z))
among those with the minimum queue length.

C. Minimum Expected Completion Time Heuristic

TheMinimum Expected Completion Time (MECT)
heuristic [MaA99], assigns the incoming task to the
core and P-state combination that provides the minimum
expected completion time from among the feasible as-
signments. When invoked at time-step tl to map task z,
the heuristic finds the expectation of the completion-time
distribution for task z for each feasible assignment, i.e.,
ECT (i, j, k, π, tl, z). The heuristic then maps the task
to the feasible assignment with the smallest expected
completion time.

D. Lightest Load Heuristic

The Lightest Load (LL) heuristic, our new herustic
inspired by [BaM09], defines a load quantity, and then
assigns the incoming task to the core and P-state combi-
nation that has the minimum load quantity from among
the feasible assignments. We define load quantity as the
product of the expected energy consumption and inverse
robustness, and the heuristic then tries to minimize this
product. When invoked at time-step tl to map task z,
the heuristic first computes ρ (i, j, k, π, tl, z) and the
expected energy consumption EEC (i, j, k, π, z) for each
feasible assignment. The LL heuristic then computes
the load value for each potential assignment, denoted
L (i, j, k, π, tl), as

L (i, j, k, π, tl) = EEC (i, j, k, π, z)

× (1.0 − ρ (i, j, k, π, tl, z)) .
(5)

The heuristic then assigns the task to the feasible assign-
ment with the smallest load value.

E. Random Heuristic

The Random heuristic assigns the incoming task to
a random core and P-state from among the feasible
assignments. This is conceptually one of the simplest
techniques for resource allocation, and we use it to
contrast the benefits achieved by using the more sophis-
ticated heuristics and our filter mechanisms.

F. Energy and Robustness Filters

We use two filtering mechanisms to restrict the set
of feasible assignments a heuristic can consider. These
allow us to add energy-awareness and/or robustness-
awareness to a heuristic that may have neither.

Our energy filter restricts the set of feasible as-
signments by eliminating all the potential assignments
that would consume more than a “fair share” of the
remaining energy budget as estimated at time-step tl,
which we denote ζfair (tl). A heuristic estimates the
remaining energy as it runs by subtracting the expected

305305303

energy consumption of each assignment it makes from
the energy budget for the simulation.

If we denote the heuristic’s estimate of the remaining
energy at time-step tl as ζ (tl) and the number of tasks
that have not yet arrived as Tleft (tl), we can define a
multiplier ζmul and express our “fair share” threshold
as

ζfair (tl) = (ζmul × ζ (tl)) /Tleft (tl) . (6)

To deal with task-arrival bursts, we change ζmul based
on the average queue depth of the system (the average
of the number of tasks queued for execution or currently
executing, at a single time-step). In our simulations, the
best results were obtained using values of ζmul = 0.8
for an average queue depth less than 0.8, ζmul = 1.0 for
an average queue depth of 0.8 to 1.0, and ζmul = 1.2
for any average queue depth greater than 1.2.

Our robustness filter restricts the set of feasible
assignments based on a probability threshold we denote
ρthresh. The filter eliminates potential assignments of
task z to core k of multicore processor j in node i
and P-state π where ρ (i, j, k, π, tl, z) < ρthresh (i.e.,
potential assignments to node i, multicore processor
k, core j, and P-state π which will not increase the
number of expected on-time completions by at least the
probability threshold). Empirically, we determined that a
threshold of ρthresh = 0.5 worked well for limiting the
set of feasible assignments without restricting a heuristic
to only high-performance (and therefore high energy
consumption) P-state assignments.

VI. SIMULATION ENVIRONMENT

A simulation trial in our environment consists of a
collection of 1,000 tasks that arrive dynamically. Each
task’s type is selected uniformly at random from one of
100 task types. We generate a distribution describing the
execution time of each task type on each machine using
the CVB method described in [AlS00], with the parame-
ters μtask = 750, Vtask = 0.25, and Vmach = 0.25. Our
entire simulation consists of 50 simulation trials with the
task arrival times, task deadlines, and task types varying
across simulation trials. All other parameters are held
constant. Note that the simulated actual task execution
times are randomly sampled from the execution time
distributions during each trial, and so these vary across
simulation trials.

In our simulations, we consider a bursty arrival rate
[LiB98]. We use an early burst of task arrivals (first
200 tasks) and a late burst of task arrivals (last 200
tasks), with a lull (600 tasks) between bursts. This
effectively makes the system undersubscribed between
task arrival bursts, which allows heuristics and filters
to try to conserve energy. Our task arrivals follow a
Poisson process, and we define an equilibrium rate λeq

such that the system is perfectly subscribed (all tasks

complete by their deadlines with no energy to spare) if
all tasks arrive following a Poisson process with this rate
(in our simulations, λeq = 1/28 ≈ 0.0357). From this
parameter, we then define a fast rate λfast and a slow
rate λslow such that task arrivals following a Poisson
process with the fast rate will cause the system to be
oversubscribed, and task arrivals following a Poisson
process with the slow rate will cause the system to be un-
dersubscribed (in our simulations, λfast = 1/8 = 0.125,
and λslow = 1/48 ≈ 0.0208). With these parameters, we
generate all the task arrivals for a single simulation trial
using a Poisson process where the rate is λfast for the
first 200 tasks, λslow for the next 600 tasks, and λfast

for the last 200 tasks. This means that the arrival rates
are constant across simulation trials, but the arrival times
may vary considerably.

For our simulation study, task deadlines are set for
each task as the sum of its arrival time, the average
execution time of its task type over all machines and all
P-states, and a constant “load factor.” The “load factor”
represents the anticipated waiting time of a task before
it begins execution. We assign deadlines assuming that
each task will not have to wait longer than the average
task execution time tavg , which we compute as the av-
erage execution time of all task types across all machines
and all P-states (in our simulations, tavg ≈ 1353). We
can then define the load factor as tavg; the actual load
will be higher when the arrival rate is λfast, and lower
when the arrival rate is λslow.
The clock-speed profile for the five P-states of each

core is specified by a set of five multipliers that scale
the execution time distributions of a task executing on
that core to reflect a higher or lower performance. The
multipliers for each P-state are calculated by adding
a random sample from a uniform distribution to the
previous multiplier (in effect increasing the performance
by a random percentage between 15% and 25%). For
all cores, the minimum P-state multiplier was never less
than 42% of the maximum, implying that the minimum
operating frequency was at least 42% of the maximum
(there are current AMD Phenom processors with similar
frequency ratios [Adv10a]).

The power consumption profile for the five P-states
of each core is calculated using the standard CMOS dy-
namic power dissipation formula (recall that power used
by other system components is assumed constant and has
already been accounted for in the energy constraint). If
A is the number of transistor switches per clock cycle,
CL is the capacitive load, V is the supply voltage, and
f is the operating frequency, then the capacitive power
dissipation is

Pc = A × CL × V 2 × f . (7)

We first calculate the power consumption in the highest

306306304

P-state for each core by sampling a uniform random
distribution between 125 and 135 Watts. We then sample
a uniform random distribution between 1.000 and 1.150
to get a low P-state voltage, sample a uniform random
distribution between 1.400 and 1.550 to get a high P-state
voltage, calculate the voltage numbers for the remaining
P-states via linear interpolation, factor A × CL into a
constant, and use our voltage and frequency values for
each P-state to compute a power consumption value. In
practice, this results in a power consumption for the low
P-state of about 25% that in the high P-state (again, there
are current AMD Phenom processors with similar power
consumption values [Adv10a]).

If we let pavg denote the average power over all P-
states and all machines, then

pavg =
1

N × |P |

N∑

i=1

∑

∀π∈P

μ (i, π) . (8)

The energy constraint for our simulation (ζmax) is tavg×
pavg × 1, 000, which would be the energy required to
execute an average task one thousand times. Because
the deadlines are tight, this amount of energy will be
insufficient to finish all tasks by their deadlines, which
will force heuristics to make a trade-off.

VII. RESULTS

Box-and-whiskers plots for the results of each heuris-
tic and its variations are shown in Figures 5 through 4,
while Figure 6 shows the simulation results for the best
variation of each heuristic. In each figure, “none,” “en,”
“rob,” and “en+rob” represent the results of the heuris-
tic with no filtering, energy filtering only, robustness
filtering only, and both energy and robustness filtering,
respectively.

We first note from Figures 2 and 3 that the unfiltered
versions of the SQ and MECT heuristics (“none”) have
median values of 375.5 missed deadlines (37.55% of
1,000) and 370 missed deadlines (37% of 1,000), respec-
tively. These are both slightly better than the unfiltered
LL heuristic (Figure 4), which has a median value of 381
missed deadlines (38.1% of 1,000). The unfiltered Ran-
dom heuristic (Figure 5) is noticeably worse, with a me-
dian value of 561.5 missed deadlines (56.15% of 1,000).
The MECT and SQ heuristics perform poorly without
filtering because they make no attempt to conserve en-
ergy: MECT will choose P0 to get a smaller completion
time, and SQ will choose P0 to get a minimum execution
time when breaking ties. LL performs poorly because,
during congestion, all the robustness values fall and LL
will choose minimum-energy assignments to minimize
the load until the congestion clears.

The results for the Random heuristic, as seen in Figure
5, bear some explanation because they differ from the
trend set by all other results. With the LL, SQ, and

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

SQ

Fig. 2. The number of missed deadlines for all variations of the SQ
heuristic are shown with a box-and-whiskers plot.

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

MECT

Fig. 3. The number of missed deadlines for all variations of the
MECT heuristic are shown with a box-and-whiskers plot.

MECT heuristics, energy filtering helps considerably
while robustness filtering is only useful when com-
bined with energy filtering. With the Random heuristic,
however, energy filtering (“en”) alone actually worsens
the median performance by 3.45%. This is because
the assignments are selected uniformly at random from
among the feasible assignments, and using energy fil-
tering removes the high-performance assignments from
the potential list. Notice that the robustness filter (“rob”)
provides a large benefit for the Random heuristic (a
22.6% improvement in median performance from 561.5
to 335.5 misses) for an analagous reason: it removes the
low-performance assignments from the potential assign-
ment list.

Figures 2 through 5 show that using robustness fil-
tering without energy filtering (“rob”) causes no signif-
icant change in results for heuristics other than Ran-
dom, but using robustness filtering with energy filtering
(“en+rob”) consistently improves the median perfor-
mance by two to three percent over energy filtering alone

307307305

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

LL

Fig. 4. The number of missed deadlines for all variations of the LL
heuristic are shown with a box-and-whiskers plot.

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

 0

 100

 200

 300

 400

 500

 600

 700

none rob en en+rob

m
is

se
d

de
ad

lin
es

filter used

Random

Fig. 5. The number of missed deadlines for all variations of the
Random heuristic are shown with a box-and-whiskers plot.

(“en”). It is not surprising that robustness alone is a
poor filtering mechanism. Consider robustness filtering
used with the MECT heuristic: the filter eliminates all
potential assignments with less than a 50% chance of
completing the task by its deadline, but this has very
little impact on the normal operation of MECT. This
is because MECT automatically chooses the highest P-
state as that guarantees the fastest execution time for the
task (and therefore faster completion time than the same
assignment with any other P-state).

If we then compare the best variation of all the heuris-
tics, we can see from Figure 6 that the energy-filtered and
robustness-filtered LL heuristic (“en+rob”) has the best
median performance (226 missed deadlines, or 22.6% of
1,000). The filtered MECT heuristic (“en+rob”) misses
a median of 239.5 task deadlines (23.95% of 1,000),
and the filtered SQ (“en+rob”) heuristic misses 234.5
task deadlines (23.45% of 1,000). Thus, all heuristics
exhibit an improvement of at least 13% over their
unfiltered counterparts. Our LL heuristic exhibits a 14%

 0

 50

 100

 150

 200

 250

 300

 350

en+rob en+rob en+rob en+rob

m
is

se
d

de
ad

lin
es

filter used

 0

 50

 100

 150

 200

 250

 300

 350

en+rob en+rob en+rob en+rob

m
is

se
d

de
ad

lin
es

filter used

SQ MECT LL Random

Fig. 6. The number of missed deadlines for the best-performing
variation of each heuristic are shown with a box-and-whiskers plot.

improvement over an unfiltered MECT heuristic. The
“en+rob” Random heuristic actually improves its median
misses by nearly 30% over the unfiltered version (266
missed deadlines compared to 561.5 missed deadlines),
and is only 4% from the “en+rob” LL heuristic. This
demonstrates that filters actually drive the performance.

In summary, consider the importance of the filtering
operations. Using “en+rob” filtering for the Random, SQ,
MECT, and LL heuristics results in improvements in the
number of tasks completed by their individual deadlines
within the energy constraint of 25%, 13.65%, 13.05%,
and 15.5%, respectively. Additionally, filtering allows the
Random heuristic to come within 4% of the complex LL
heuristic. These results demonstrate how filtering is the
key to success in our environment.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a model of robustness
for our environment and validated its use in allocation
decisions. We also presented two filters, two adaptations
of existing heuristics, and one new heuristic that can
make assignments utilizing robustness and accounting
for an energy constraint. Based on our simulation results,
we can conclude that appropriate filtering mechanisms
are fundamental to improving heuristic performance in
our environment.
In future work, we would like to extend our model

to include more energy-conserving techniques than just
DVFS. This would include mechanisms such as ACPI G-
states, power gating, and hard-disk power management.
We also want to use full probability distributions to
represent power consumption, instead of assuming that
power consumption is a constant representing an average
value (as described in Section VI). We intend to expand
our model to consider tasks with varying priorities, and
a system with the ability to cancel and/or reschedule
tasks. Finally, we want to include a variety of arrival

308308306

rates and patterns, to better understand how the relative
performance of the heuristics changes under varying
conditions.

Acknowledgments: The authors thank Greg Pfister
and Jerry Potter for their comments on this research.

REFERENCES

[Adv10a] Advanced Micro Devices, AMD Family 10h Desk-
top Processor Power and Thermal Data Sheet,
Rev 3.46, 2010, http://support.amd.com/us/Processor
TechDocs/43375.pdf, accessed March 2, 2011.

[Adv10b] Advanced Micro Devices, AMD PowerNow!
Technology, 2010, http://www.amd.com/us/
products/technologies/amd-powernow-technology/Pages/
amd-powernow-technology.aspx, accessed March 2, 2011.

[Adv10c] Advanced Micro Devices, BIOS and Kernel Devel-
oper’s Guide (BKDG) for Family 10h Processors,
Rev 3.48, 2010, http://support.amd.com/us/Processor
TechDocs/31116.pdf, accessed March 2, 2011.

[AlM04] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Measuring the robustness of a resource allocation,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15,
No. 7, July 2004, pp. 630–641.

[AlM08] S. Ali, A. A. Maciejewski, and H. J. Siegel, Perspectives
on Robust Resource Allocation for Heterogeneous Parallel
Systems, Chapman & Hall/CRC Press, Boca Raton, FL,
2008, pp. 41–1–41–30.

[AlS00] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen,
“Representing task and machine heterogeneities for hetero-
geneous computing systems,” Tamkang Journal of Science
and Engineering, Special 50th Anniversary Issue, Vol. 3,
No. 3, Nov. 2000, pp. 195–207.

[ApY11] J. Apodaca, D. Young, L. Briceño, J. Smith, S. Pasricha,
A. A. Maciejewski, H. J. Siegel, S. Bahirat, B. Khemka,
A. Ramirez, and Y. Zou, “Stochastically robust static re-
source allocation for energy minimization with a makespan
constraint in a heterogeneous computing environment,” 9th

ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA ‘11), Dec. 2011.

[AyM01] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
“Dynamic and aggressive scheduling techniques for power-
aware real-time systems,” 22nd IEEE Real-Time Systems
Symposium (RTSS ‘01), Dec. 2001, pp. 95–105.

[BaM09] J. Barbosa and B. Moreira, “Dynamic job scheduling on
heterogeneous clusters,” 8th International Symposium on
Parallel and Distributed Computing (ISPDC ‘09), July
2009, pp. 3–10.

[BoE02] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony, “The case for power
management in web servers,” Power Aware Computing,
Kluwer Academic Publishers, Norwell, MA, USA, 2002,
pp. 261–289.

[BrK11] L. D. Briceño, B. Khemka, H. J. Siegel, A. A. Maciejewski,
C. Groer, G. Koenig, G. Okonski, and S. Poole, “Time
utility functions for modeling and evaluating resource al-
locations in a heterogeneous computing system,” 4th Het-
erogeneity in Computing Workshop (HCW ‘11), May 2011,
pp. 1–14.

[CSU11] CSU Information Science and Technology Center, ISTeC
Cray High Performance Computing (HPC) System, 2011,
http://istec.colostate.edu/istec cray, accessed June 15, 2011.

[Hew10] Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., and Toshiba
Corporation Std., Advanced Configuration and Power
Interface Specification, Rev. 4.0a, Apr. 2010, http://
www.acpi.info/DOWNLOADS/ACPIspec40a.pdf, accessed
March 2, 2011.

[Int10] Intel Corporation, Frequently asked questions for Intel
SpeedStep Technology, 2010, http://www.intel.com/support/
processors/sb/CS-028855.htm, accessed March 2, 2011.

[KiB07] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling
of bag-of-tasks applications with deadline constraints on
dvs-enabled clusters,” 7th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGrid ‘05),
May 2007, pp. 541–548.

[KiS08] J.-K. Kim, H. J. Siegel, A. A. Maciejewski, and R. Eigen-
mann, “Dynamic resource management in energy con-
strained heterogeneous computing systems using voltage
scaling,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 19, No. 11, Nov. 2008, pp. 1445–1457.

[KoB09] J. G. Koomey, C. Belady, M. Patterson, A. Santos,
and K.-D. Lange, “Assessing trends over time in
performance, costs, and energy use for servers,”
Lawrence Berkeley National Laboratory, Stanford
University, Microsoft Corporation, and Intel Corporation,
Tech. Rep., Aug. 2009, accessed March 2,
2011, http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.87.5562&rep=rep1&type=pdf.

[Koo07] J. G. Koomey, “Estimating total power consumption
by servers in the U.S. and the world,” Lawrence
Berkeley National Laboratory, Tech. Rep., Feb.
2007, http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.87.5562&rep=rep1&type=pdf.

[Leo89] A. Leon-Garcia, Probability & Random Processes for Elec-
trical Engineering, Addison Wesley, Reading, MA, 1989.

[LiA97] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and D. W.
Watson, “Determining the execution time distribution for a
data parallel program in a heterogeneous computing envi-
ronment,” Journal of Parallel and Distributed Computing,
Vol. 44, No. 1, July 1997, pp. 35–52.

[LiB98] C. Li, R. Bettati, and W. Zhao, “Response time analysis for
distributed real-time systems with bursty job arrivals,” 1998
International Conference on Parallel Processing (ICPP
‘98), Aug. 1998, pp. 432–440.

[MaA99] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, Vol. 59, No. 2, Nov. 1999, pp.
107–121.

[PhP03] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems,
and Transforms, Pearson Education, Upper Saddle River,
NJ, 2003.

[SmA10] J. Smith, J. Apodaca, A. A. Maciejewski, and H. J. Siegel,
“Batch mode stochastic-based robust dynamic resource al-
location in a heterogeneous computing system,” 2010 Inter-
national Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ‘10), July 2010, pp.
263–269.

[SmC09] J. Smith, E. K. P. Chong, A. A. Maciejewski, and H. J.
Siegel, “Stochastic-based robust dynamic resource alloca-
tion in a heterogeneous computing system,” 38th Interna-
tional Conference on Parallel Processing (ICPP ‘09), Sep.
2009.

[SmS09] J. Smith, H. J. Siegel, and A. A. Maciejewski, “Robust
resource allocation in heterogeneous parallel and distributed
computing systems,” Wiley Encyclopedia of Computer Sci-
ence and Engineering, B. W. Wah, Ed., John Wiley & Sons,
Hoboken, NJ, 2009, Vol. 4, pp. 2461–2470.

[Was05] L. Wasserman, All of Statistics: A Concise Course in Sta-
tistical Inference, Springer Science+Business Media, New
York, NY, 2005.

[XiL08] C. Xian, Y.-H. Lu, and Z. Li, “Dynamic voltage scaling
for multitasking real-time systems with uncertain execution
time,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 27, No. 8, Aug. 2008,
pp. 1467–1478.

[YuV08] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling
of imprecise-computation tasks in maximizing QoS under
energy constraints for embedded systems,” 2008 Asia and
South Pacific Design Automation Conference (ASPDAC
‘08), Mar. 2008, pp. 452–455.

309309307

