J Supercomput (2013) 63:326-347
DOI 10.1007/s11227-012-0740-7

Deadline and energy constrained dynamic resource
allocation in a heterogeneous computing environment

B. Dalton Young - Jonathan Apodaca - Luis Diego Briceifio - Jay Smith -
Sudeep Pasricha - Anthony A. Maciejewski - Howard Jay Siegel -
Bhavesh Khemka - Shirish Bahirat - Adrian Ramirez - Yong Zou

Published online: 2 February 2012
© Springer Science+Business Media, LLC 2012

B.D. Young () - L.D. Bricefio - J. Smith - S. Pasricha - A.A. Maciejewski - H.J. Siegel -

B. Khemka - S. Bahirat - A. Ramirez - Y. Zou

Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO,
USA

e-mail: dalton.young @colostate.edu

L.D. Bricefio
e-mail: 1dbricen @colostate.edu

J. Smith
e-mail: jtsmith@digitalglobe.com

S. Pasricha
e-mail: sudeep@colostate.edu

A.A. Maciejewski
e-mail: aam@colostate.edu

H.J. Siegel
e-mail: hj@colostate.edu

B. Khemka
e-mail: bhavesh.khemka@colostate.edu

S. Bahirat
e-mail: shirish.bahirat@colostate.edu

A. Ramirez
e-mail: adrian.ramirez @colostate.edu

Y. Zou

e-mail: yong.zou@colostate.edu

J. Apodaca - S. Pasricha - H.J. Siegel

Department of Computer Science, Colorado State University, Fort Collins, CO, USA
J. Apodaca

e-mail: jonathan.apodaca@colostate.edu

J. Smith
DigitalGlobe, Longmont, CO, USA

@ Springer

mailto:dalton.young@colostate.edu
mailto:ldbricen@colostate.edu
mailto:jtsmith@digitalglobe.com
mailto:sudeep@colostate.edu
mailto:aam@colostate.edu
mailto:hj@colostate.edu
mailto:bhavesh.khemka@colostate.edu
mailto:shirish.bahirat@colostate.edu
mailto:adrian.ramirez@colostate.edu
mailto:yong.zou@colostate.edu
mailto:jonathan.apodaca@colostate.edu

Deadline and energy constrained dynamic resource allocation 327

Abstract Energy-efficient resource allocation within clusters and data centers is im-
portant because of the growing cost of energy. We study the problem of energy-
constrained dynamic allocation of tasks to a heterogeneous cluster computing en-
vironment. Our goal is to complete as many tasks by their individual deadlines and
within the system energy constraint as possible given that task execution times are
uncertain and the system is oversubscribed at times. We use Dynamic Voltage and
Frequency Scaling (DVFS) to balance the energy consumption and execution time
of each task. We design and evaluate (via simulation) a set of heuristics and filter-
ing mechanisms for making allocations in our system. We show that the appropriate
choice of filtering mechanisms improves performance more than the choice of heuris-
tic (among the heuristics we tested).

Keywords Dynamic resource allocation - Heterogeneous computing - Power aware
computing

1 Introduction and problem statement

Energy consumption of servers and data centers is a growing concern (e.g., [11, 19]).
Some studies predict that the annualized cost of powering and cooling servers may
soon exceed the annualized cost of equipment acquisition [20], which could force
some servers to operate under a constraint on the amount of energy used to complete
workloads.

In this research, we study the problem of dynamically allocating a collection of in-
dependent tasks to a heterogeneous computing cluster (heterogeneous both in terms
of performance and power efficiency) while considering energy. We assume that the
system is often oversubscribed, as is the case for the Oak Ridge National Labs Ex-
treme Scale Systems Center system under development [13]. The goal is to maximize
the number of tasks completed by their individual deadlines under a constraint on the
total amount of energy used by the system. Our problem formulation is more com-
plex than earlier approaches because we consider the combination of a heterogeneous
cluster, a time-varying arrival rate for tasks that causes the system to be oversub-
scribed at times, tasks with individual deadlines, stochastic task execution times, an
energy constraint to process a fixed number of tasks, a system model that allows the
selective cancellation of some tasks, and using the concept of robustness (described
in Sect. 4) in the objective functions of some heuristics.

We approach this problem by deriving resource allocation heuristics and filtering
mechanisms that are capable of leveraging the cluster heterogeneities to maximize the
number of tasks completed under a given energy constraint. We then compare these
heuristics via simulation. Two of our heuristics are adapted from the literature to our
environment, while the third is a novel heuristic that attempts to balance each task’s
energy consumption and probability of completing by its deadline. Additionally, our
two filter mechanisms can be generically applied to any heuristic to add energy-
awareness and/or robustness-awareness. Our workload (described in Sect. 3.2) con-
sists of a dynamically-arriving mix of different task types (e.g., compute-intensive,
memory-intensive). Our system is oversubscribed at times, so we cannot utilize cer-
tain energy-conserving techniques (described in Sect. 3.1). Thus, our heuristics and

@ Springer

328 B.D. Young et al.

filters are limited to controlling energy consumption via task-to-machine mapping
and processor Dynamic Voltage and Frequency Scaling (DVFS).

In this paper, we make the following contributions: (a) we develop a model of
robustness for this environment and validate its use in allocation decisions, (b) we
present an adaptation of two existing heuristics to utilize robustness and account for
an energy constraint while making task-to-machine assignments, (c) we present a new
heuristic for use in our environment, and (d) we demonstrate the utility of our gener-
alized filter mechanisms via simulations, which show at least a 10% improvement in
each heuristic due to filtering.

The remainder of this paper is organized as follows. The next section discusses a
sampling of the most closely-related work. In Sect. 3, we define the model of the com-
pute cluster, workload, and energy consumption of the system. Based on this system
model, we formally introduce the concept of robustness and derive a robustness mea-
sure suitable to this environment in Sect. 4. Section 5 describes the heuristics used
in this study. Section 6 then discusses our simulation setup, while Sect. 7 presents
and analyzes our simulation results. We conclude with Sect. 8, wherein we discuss
extensions to this research and future directions.

2 Related work

The problem of mapping dynamically-arriving tasks under an energy constraint is
addressed in [17]. That work focused on conserving battery life in an ad-hoc grid
environment while completing as many high-priority tasks as possible, followed by
as many low-priority tasks as possible. The environment in [17] also used a bursty
environment with oversubscription. However, our study is fundamentally different
because we work with probability distributions representing uncertain task execution
times, whereas the work in [17] used scalar task execution times. Also, our study
focuses on a cluster environment with a single energy constraint, while the work in
[17] focused on an ad-hoc grid with energy constraints on a per-component basis.

The research in [30] uses Dynamic Voltage and Frequency Scaling (DVFS) within
a real-time system where the tasks have uncertain execution times. Unlike our study,
there is no energy constraint and the system is not oversubscribed. The work in [30]
also emphasizes the benefits of inter-task DVFS to take advantage of slack time,
but our system is oversubscribed at times. Similarly, the research in [32] attempts
to maximize a mathematical model of Quality of Service (QoS) under an energy
constraint, but it does so using DVFS to take up slack time in an undersubscribed
system, whereas our system is oversubscribed some of the time.

In [9], the authors use a multipart solution to save energy in a dynamic, real-
time system with periodic tasks. Like [9], our environment is dynamic, but it is also
oversubscribed. Additionally, we have the goal of completing as many tasks by their
deadlines as possible under an energy constraint, whereas the study in [9] has the
goal of minimizing energy under the constraint of completing all tasks by their hard
deadlines. Also, the solution in [9] utilizes a static component to develop its sched-
ules, while our heuristics are limited to immediate-mode operation (tasks are mapped
immediately upon arrival [24]).

@ Springer

Deadline and energy constrained dynamic resource allocation 329

Similarly, in[18] a set of independent tasks with individual deadlines are dynami-
cally allocated to a cluster while attempting to conserve energy. While [18] attempts
to optimize the energy consumed under the constraint of completing all tasks by their
deadlines, our environment has an energy constraint and we optimize the number of
tasks completed. The work in[18] uses deterministic task execution times and con-
stant arrival rates with an undersubscribed system, while our research focuses on
stochastic task execution times and a bursty arrival rate with the system oversub-
scribed during task-arrival bursts.

This group has previously studied dynamic resource allocation in [26, 27]. This
research uses some heuristics from [27] and part of the robustness definition from
[26]. However, neither of these previous works deal with energy-aware scheduling.
We have also studied the static allocation of independent tasks with a common dead-
line to optimize the energy consumed in [8].

3 System model
3.1 Cluster configuration

Our model of a cluster allows the performance and power efficiency of each node
in the cluster to vary substantially. That is, the system is heterogeneous because it
may consist of compute nodes that are quite different from one another. Machine
performance is defined in terms of the time required to execute a given task, i.e.,
a higher performance machine will execute a task in less time than a lower perfor-
mance machine. The machine performance of the nodes in this cluster is assumed to
be inconsistent [7], i.e., because machine A is faster than machine B on one task does
not imply that machine A is faster for all tasks.

Our model assumes that a cluster consists of N heterogeneous compute nodes,
each with a different number of multicore processors, different number of cores in
each multicore processor, different set of available processor frequencies, different
power consumption profile, and different power supply efficiency. Each compute
node i consists of n(i) multicore processors. Each multicore processor in compute
node i has c(i) cores, where c(i) is constant within each node. Figure 1 shows the
hierarchy of nodes, multicore processors, and cores within our cluster.

We assume that each core k in multicore processor j processes tasks indepen-
dently of the other cores, and all cores and multicore processors within a given com-
pute node are homogeneous. We also assume that our cores are non-multitasking and
execute one task at a time, as is the case with the ISTeC Cray XT6m system currently
in use at Colorado State University [14]. In this study, we limit the size of our clus-
ter (see Sect. 6 for details) to limit our simulation execution times, but our proposed
techniques can be easily extended to larger clusters of nodes.

Our hierarchical cluster model is directly applicable to the ISTeC Cray XT6m.
While the current system is homogeneous across compute nodes, there are plans to
add GPUs to a limited subset of the compute nodes as well as to continually grow
the system with new compute nodes based on the technology available at the time of
purchase. Thus, this system will indeed be heterogeneous and follow our hierarchical
model.

@ Springer

330 B.D. Young et al.

Fig. 1 The hierarchy of nodes,
. node N
multicore processors, and cores .
that are used in our system .
model | node 2
node 1
multicore processor 1
| core 1 | | core 2 | cee core c(1)
multicore processor 2
| core 1 | | core 2 eee core c(1)
.
L]
.
[multicore processor (1)
| core 1 | | core 2 | e corec(l)

Our model of available processor frequencies and processor power consumption is
based on the ACPI standard [1]. The standard defines P-states, which are processor
performance states that allow the processor to save power while executing instruc-
tions at the expense of decreased performance, i.e., increased task execution times.
These states are used in DVFS implementations in many commodity processors (e.g.,
[3, 15]).

Given the large number of cores in the latest compute nodes (24 cores per compute
node in our ISTeC Cray XT6m) and the fact that our system can be oversubscribed
at any time in an unpredictable manner, turning the power off to a compute node has
a high associated overhead for the systems we are considering, and is therefore not
considered in our model (but it may be considered in future work). Thus, we assume
that the variation in energy consumed by the shared system components of each node
(such as disk drives and fans) is small compared to the energy consumption of cores
and can therefore be approximated as constant and excluded from our computations
(subtracted from the energy constraint before any tasks are scheduled). In this way,
we are assuming that only the P-states can be used to save power (we discuss future
work modifications to our model to consider power usage by memory and shared
system components in Sect. 8). Although there are many different models of energy
consumption in the literature, we feel that this model captures most of the salient
attributes of compute node energy usage that we can control, and future work could
consider extensions to the model such as including memory energy consumption and
ACPI G-states. Our model can also be extended to deal with other tasks that do not
benefit from DVFS (e.g., memory-intensive, communication-intensive), as described
as future work in Sect. 8.

The ACPI standard defines up to 16 P-states, but we will assume that a set of
only five, denoted P, is available: Py, P, P>, P3, and P4. Each P-state is associated
with a certain clock speed and voltage configuration for a core that defines its cor-
responding power consumption. We will assume that, as power supplied to a core is
increased, the performance of the core also will increase. We also will assume that
task performance is linearly proportional to processor frequency, and proportional to
processor power consumption as described in Sect. 6. Following convention [1, 4],

@ Springer

Deadline and energy constrained dynamic resource allocation 331

let Py correspond to the base P-state that provides the highest power consumption
(and therefore highest performance), and P4 correspond to the P-state that provides
the lowest power consumption (and therefore lowest performance). Power consump-
tion in real systems can vary within a given P-state. For this study, we make the
simplifying assumption that the power consumption of a core operating in a given
P-state can be approximated by a scalar constant that represents the average power
consumption. The power consumed by P-state 7 in any core (because we assume that
all cores and multicore processors within a compute node are identical) of compute
node i is denoted w (i, 7w). We will discuss the values of (i,), as well as the relative
performance of the cores in each P-state, in Sect. 6.

In our environment, the resource management system controls the P-states of each
core individually. The operating system of each compute node provides a power man-
agement kernel that controls the P-state transitions for each core within each multi-
core processor, and we assume that cores within a multicore processor can switch
P-states independently [4]. In this research, we assume that there is a cluster resource
manager integrated with the operating system power manager so that the cluster re-
source manager can direct the power management kernel to change P-states, and that
P-state transition times can be ignored because they are small (hundreds of microsec-
onds [4]) with respect to task execution times (e.g., thousands of milliseconds). Be-
cause our scheduler operates with stochastic task execution times and performs con-
volutions, we reduce its overhead and complexity by assuming that cores can only
change P-states when idle, i.e., P-states cannot be transitioned during task execution.
The cluster resource manager will execute our resource allocation heuristics and take
responsibility for controlling the power consumption of the cluster—in addition to
assigning tasks to cores for execution.

Within a node of the cluster, power efficiency relates the total power provided by a
power supply to the actual power it consumes. For example, a power supply with 90%
efficiency supplies 90 watts of power to the elements of the node for every 100 watts
of power it consumes. We denote the power efficiency of the power supply in node i
as €(i).

3.2 The workload

The workload in the environment in our model is a dynamically-arriving collection
of independent tasks, i.e., a “bag of tasks” [16] where the exact task mix is unknown
prior to its arrival. However, each task is selected from a finite collection of well-
known task types (such as may be found in many military, lab, government, and
industrial environments), and the execution time probability mass function (pmf) of
each task type can be derived from histograms of experiments or past runs of tasks
of the given type over typical data sets (one example of such tasks can be found in
[12]). The different task types are primarily compute-intensive.

In the workload, the execution time of each task is considered stochastic due to
factors such as varying input data or cache conflicts, and that we are provided an
execution-time pmf for each task type executing on a single core of each node in
each P-state (such pmfs may in practice be obtained by historical, experimental, or
analytical techniques [23, 29]). More specifically, we model the execution time of

@ Springer

332 B.D. Young et al.

each task type as a random variable and assume that we are given a probability mass
function describing the possible execution time values and their probabilities for each
task type, core, and P-state combination. We also assume that power consumption is
a function of P-state and processor. We will discuss the creation of execution time
distributions for our simulations in Sect. 6.

Our workload is characterized by a bursty arrival rate [22], which will cause the
system to be oversubscribed during burst periods and undersubscribed at other times.
We assume that we are provided a deadline for completing each task z, denoted §(z),
i.e., 8(z) defines a constraint on the completion time of task z. In a real system, task
deadlines can come from multiple sources (e.g., limits set by system administrators,
user requirements for timely data). Each deadline is considered a hard deadline, and
there is no value in completing a task after its deadline has passed (i.e., the task is not
counted as completed if its deadline is missed). This is similar to the system under
development at the Extreme Scale Systems Center at Oak Ridge National Lab [13].
We assume our cluster resource manager cannot stop a task after it has been scheduled
and must execute it to completion as a best-effort basis even if the task misses its
deadline because allowing the scheduler to stop tasks complicates our mathematical
model considerably and results in a more complex scheduler (this is potential future
work). We will describe our deadline and arrival rate models in more detail in Sect. 6.

We test our heuristics over a workload consisting of a window of 12 hours worth
of tasks generated as described in Sect. 6. We assume that our resource management
heuristics can make allocation decisions that take into account the amount of time
remaining in the 12 hour window. It is assumed that processors report to the resource
manager whenever a task completes, so that the resource manager will know what
tasks are still awaiting execution for each core.

We limit our cluster resource manager to operating in an immediate-mode [24].
Additionally, we assume that tasks cannot be reassigned, either to a new core or a
new P-state, once they are mapped, but that the resource manager may leave a task
unassigned or opt to cancel a task completely just before the task begins execution.
Task mapping is controlled by the resource allocation heuristic employed by the clus-
ter resource manager.

3.3 Energy consumption

As the tasks are independent and cores can change their P-states independently of
one another, we can find the energy required by each core throughout the entire sim-
ulation independently of the other cores (recall that disk and memory energy require-
ments are treated as a constant and are therefore not included here). We can then
find the total energy required by the cluster by summing the energy required by all
cores. Because we assume that cores cannot be turned off, the energy consumption for
each core can be found by identifying the time of each P-state transition, calculating
the time difference between successive transitions, and multiplying this time differ-
ence by the power required to support that P-state. Each core implicitly transitions to
P-state P4 whenever it is idle.

Let v(i, j, k) denote the list of P-state transitions that are scheduled for core k
of multicore processor j in node i throughout the execution of the workload, let

@ Springer

Deadline and energy constrained dynamic resource allocation 333

|v(i, j, k)| denote the size of list v(i, j, k), let v(i, j, k,n) denote the nth P-state
transition in list v(i, j, k), let time(x) denote the time of P-state transition x, and
let pstate(x) denote the ending P-state for the transition. We assume that each core
makes at least two P-state transitions: one at the start of workload execution and
one at the end of workload execution. If we define At(n) = time(v(i, j, k,n)) —
time(v(i, j, k,n — 1)), we can compute the energy used by each core, which we de-
note n(i, j, k), as
Iv(i, k)l
n@,j, k)= Z ,u(i,pstate(v(i, j,k,n))) x At (n). D
n=1
Using the energy needed by each core (n(i, j, k)) from (1), we can find the energy
required to complete the entire workload, which we denote ¢, as

N n() cG) 0. k)
= R 2
=22 0.7 @
i=1 j=1 k=1
We let {max denote the energy constraint for completing the workload. Any tasks

not completed within the energy constraint are considered as having missed their
deadlines.

4 Robustness
4.1 Overview

We use random variables to model task execution times because the actual execution
time of each task is uncertain [28]. We want our resource allocations to be “robust,”
meaning that they mitigate the impact of uncertainties on our performance objec-
tive [6]. More specifically, we want our resource allocations to mitigate the impact
of the uncertain task execution times on our objective of completing as many tasks
as possible, by their individual deadlines, within our energy constraint. This research
builds on the robustness model presented in [26].

When a system is described as robust, three questions must be answered [5]:
(1) What behavior makes the system robust? (2) What uncertainties is the system
robust against? (3) How is the robustness of the system quantified? In our system
model, an allocation is robust if it can complete all tasks by their individual dead-
lines; an allocation is robust against uncertainties in task execution times; and the
robustness of an allocation is quantified as the expected number of tasks which will
complete by their deadlines.

4.2 Stochastic task completion time
At the /th time-step #;, we want to predict the completion time of a task z if it is
assigned to a core k in multicore processor j of node i. Calculating this completion

time requires combining the execution times for all tasks that have been assigned to
core k with the execution time of z. When using a deterministic (i.e., nonprobabilistic)

@ Springer

334 B.D. Young et al.

model, we calculate the completion time as the sum of the estimated execution times
for all tasks assigned to core k, the estimated execution time for task z if assigned
to core k, and the ready time of core k. Because we are using a stochastic model
(task execution times are represented by pmfs), we calculate the completion time as
the sum of the random variables represented by the pmfs and the ready time. This
completion time sum requires a convolution of pmfs [21, 25]. Convolutions can take
considerable time related to the total number of impulses in each convolution, which
increases with each subsequent convolution. The overhead can be negligible if task
execution times are sufficiently long. Furthermore, the performance gained justifies
their usage.

Let O(#;) be the set of all tasks that are either queued for execution or are cur-
rently executing on any of the cores in the cluster at time-step #;. To determine the
completion time of task z if assigned to core k of multicore processor j on node i
at time-step #;, we first identify the ordered list of tasks in Q(#) that are assigned to
core k, in order of their assignment to core k, and we let Q(i, j, k, ;) denote this list.
If there are no tasks assigned to core k, then Q(, j, k, ;) = ¥, and the ready time of
this core is equal to the current time. In this case, the stochastic completion time of
task z if assigned to core k is represented by the execution-time pmf of task z on core
k in its chosen P-state, shifted by the current time.

If QG, j, k,t;) # 0, then the execution time pmf for the currently executing task
a on core k (the first task in Q(i, j, k, #;)) requires additional processing prior to its
convolution with the pmfs of the queued tasks (other tasks in Q (i, j, k, #;)). If a began
execution at time-step #, (h < [), some of the impulse values of the pmf describing the
completion time of a are in the past. Therefore, accurately describing the completion
time of task a at time #; requires shifting the execution-time distribution for task
a by t;, (effectively creating the completion-time distribution for task a if it started
execution at time f3,), removing the past impulses from the pmf (those impulses which
occur at time less than #;), and renormalizing the remaining distribution [27]. After
renormalization, the resulting distribution describes the completion time of a on core
k as predicted at time-step #;. This distribution is then convolved with the execution
time pmfs of the tasks in Q(i, j, k, ;) and the execution-time pmf of task z on this
core in its chosen P-state to produce the completion-time pmf for task z if assigned
to core k at the current time-step ;. Figure 2 shows an example of the computation
required to find the completion time distribution for a currently executing task at a
specific time.

The above computations can be applied to any task in Q(, j, k, ;) to obtain
a completion-time distribution. The completion-time distribution for the currently-
executing task a on core k, for example, can be found by shifting the execution-time
distribution of a assigned on core k by its start time, removing impulses at time values
less than #;, and renormalizing the distribution. The completion-time distribution for
task b assigned immediately after task a on core k can then be found by convolving
the execution-time distribution of task b assigned on core k with the completion-time
distribution of task a.

In this environment, stochastic completion time must also be modified to reflect
the scheduler’s ability to cancel tasks when they become ready to execute. To ac-
count for this, we can exclude from the completion-time distribution computations

@ Springer

Deadline and energy constrained dynamic resource allocation 335

1 T T T T 1 — 1 —
o o
E £
081 1 08 1= b 081 1=
o o
5 5
0: 0:
206f 1 2z 06f : 1 zo06f :
3 3 £
© © ©
Q Q Qo
[[[
S 04t {1 ©Soaf {1 &So4f
021 1 021 b 0.2
0 2 3 4 5 6 7 0 5 6 7 8 9 10 0 5 6 7 8 9 10
time time time
a: execution-time distribution b: completion-time distribution c: completion-time distribution at time 7.5

Fig. 2 Example of the additional processing required at time 7.5 for a currently executing task that started
at time 3. In a, we have the execution-time distribution of the task. In b, the execution-time distribution
has been shifted by its start time (3) to form a completion-time distribution. In ¢, those impulses that occur
before the current time have been removed, and the remaining distribution has been renormalized to form
the completion-time distribution at time 7.5

those distributions for tasks which we think will be canceled (based on the current
state of the system). Using the previous example, imagine we want the completion-
time distribution for a task c assigned after a queued task b and an executing task a.
If the scheduler is canceling any task with a probability of less than or equal to 0%
of completing by its deadline, and the probability of b completing by its deadline,
as calculated from its completion-time distribution, is less than or equal to 0%, then
we can assume that b will be canceled and compute the completion-time distribu-
tion for task c¢ as the convolution of the completion-time distribution for task a and
the execution-time distribution for task c. It is possible that a task’s probability of
completion increases or decreases as it moves through the queue (Q(i, j, k)).

4.3 Robustness calculation

The robustness of a resource allocation in this environment is defined at a given time-
step #; as the expected number of tasks that will complete by their individual dead-
lines, predicted at #; [26]. We denote this value p(#;). Because there is no inter-task
communication in our cluster environment (all tasks are independent), the expected
number of on-time task completions for all tasks assigned to a common core k of
multicore processor j in node i (all tasks in Q(i, j, k, #;)) is independent across all
cores and nodes. We let p(i, j, k, t;) denote this value. If we let p(i, j, k, 7, #;, q) de-
note the probability of task z in Q(i, j, k, #;) with P-state & finishing by its deadline
8(z), then we can compute p(i, j, k, t;) as

pl ko)=Y pljkmuz). 3)
VzeQ(,j.k,t)
We can therefore calculate p (1) as

N n(@) c@)

p)=)_>" pljkn).)

i=1 j=1 k=1

@ Springer

336 B.D. Young et al.

To complete as many tasks as possible by their individual deadlines, the research in
[26] indicates that we should maximize the expected number of on-time completions
(p(1;)) at each time-step [26]. However, our system is limited to immediate-mode
mapping. Therefore, if we are assigning a task z at time-step #;, we can maximize
p(t;) by assigning z to the core k of multicore processor j in node i and P-state 7 that
maximizes p(i, j, k, 7, t;, z) (assigning the task where it has the highest probability
of completing by its deadline).

To find a task’s probability of completing by its deadline given a node, multicore
processor, core, and P-state assignment, we can merely find the completion-time dis-
tribution for the assignments as described in Sect. 4.2, and then sum the impulses in
the distribution that are less than the deadline. We will use this number in our filters
and heuristics.

5 Heuristics and filters
5.1 Overview

In this study, we adapted two task-scheduling heuristics taken from the literature to
our cluster environment. We also created a new heuristic and implemented a random-
assignment heuristic. An assignment consists of mapping a single task to a node, mul-
ticore processor, core, and P-state. Each heuristic, operating in an immediate-mode,
assigns a single task to a node, multicore processor, core, and P-state for execution.
We developed two filtering mechanisms that can be generically applied to any task-
scheduling heuristic to limit the set of feasible assignments the heuristic may use.
A filtering mechanism could eliminate all potential assignments, which would cause
the task to remain unassigned and be discarded. We also developed a generic start-
time cancellation mechanism that can allow any task-scheduling heuristic to take
advantage of the system’s ability to cancel tasks immediately before they execute.

We use several expectation operations because our heuristics work with pmfs. For
a task z executing on core k of multicore processor j in node i and P-state w, we
compute the expected completion time (denoted ECT(, j, k, 7, #1, 7)) by taking the
expectation of the stochastic completion time distribution. Similarly, expected ex-
ecution time (denoted EET(i, j, k, m, 7)) is found by taking the expectation of the
execution-time distribution for a task. The expected energy consumption of an as-
signment (denoted EEC(i, j, k, 7, z)) is found by multiplying the expected execution
time by the power consumption of the core and P-state where the task is assigned
(un(i, m)), and then dividing by the power efficiency of the node where the task is as-
signed (e(i)). Note that execution time of a task is a function of P-state, as described
in Sect. 6, and so completion time of a task also must be a function of P-state. Energy
consumption of a task is based on the energy consumption of the core in the current
P-state, as well as execution time.

Although our heuristics may manipulate pmfs and perform convolutions, their ex-
ecution time is minimal relative to task execution times. The pmf operations can take
a notable amount of time when there is a large number of tasks in execution queues.
However, when quick scheduling decisions are needed, the queues will be mostly
empty and the heuristics will operate quickly.

@ Springer

Deadline and energy constrained dynamic resource allocation 337

5.2 Shortest Queue heuristic

The Shortest Queue (SQ) heuristic [27] assigns the incoming task to the core with
the fewest tasks currently assigned to it from among the feasible assignments. When
invoked at time-step #;, the heuristic finds the number of tasks currently assigned to
each core k of multicore processor j in node i in the list of feasible assignments (we
denote this value |MQ(, j, k, t;)|), and then maps the arriving task to the feasible as-
signment with the smallest value of |IMQ(i, j, k, #7)|. If multiple feasible assignments
have the same minimum queue length, then the heuristic assigns the task to the core
and P-state combination that has the minimum expected execution time for the task
(EET(, j, k, , z)) among those with the minimum queue length.

5.3 Minimum Expected Completion Time heuristic

The Minimum Expected Completion Time (MECT) heuristic [24], assigns the incom-
ing task to the core and P-state combination that provides the minimum expected
completion time from among the feasible assignments. When invoked at time-step #
to map task z, the heuristic finds the expectation of the completion-time distribution
for task z for each feasible assignment, i.e., ECT(i, j, k, 7, t;, 7). The heuristic then
maps the task to the feasible assignment with the smallest expected completion time.

5.4 Lightest Load heuristic

The Lightest Load (LL) heuristic, our new heuristic inspired by [10], defines a load
quantity, and then assigns the incoming task to the core and P-state combination that
has the minimum load quantity from among the feasible assignments. We define load
quantity as the product of the expected energy consumption and inverse robustness,
and the heuristic then tries to minimize this product. When invoked at time-step #
to map task z, the heuristic first computes p (i, j, k, , t;, z) and the expected energy
consumption EEC(, j, k, 7, z) for each feasible assignment. The LL heuristic then
computes the load value for each potential assignment, denoted L (i, j, k, 7, #;), as

L(,j k7, 4)=EEC(, j k7 2) x (1.0=pG, j, k7, 1,2)). 5)
The heuristic then assigns the task to the feasible assignment with the smallest load
value.

5.5 Random heuristic

The Random (RAND) heuristic assigns the incoming task to a random core and P-
state from among the feasible assignments. This is conceptually one of the simplest
techniques for resource allocation, and we use it to contrast the benefits achieved by
using the more sophisticated heuristics and our filter mechanisms.

5.6 Energy and robustness filters
We use two filtering mechanisms to restrict the set of feasible assignments a heuristic

can consider. These allow us to add energy-awareness and/or robustness-awareness
to a heuristic that may have neither.

@ Springer

338 B.D. Young et al.

Our energy filter restricts the set of feasible assignments by eliminating all the
potential assignments that would consume more than a “fair share” of the remaining
energy budget as a heuristic to try and maximize the number of tasks that will finish
within the energy constraint. We denote this “fair share” estimated at time-step #; as
Crair(f7). A heuristic initially subtracts the energy required to run all cores in P4 for
12 hours so that any energy wasted by idling cores is correctly accounted for. It then
estimates the remaining energy as it runs by subtracting the difference between the
expected energy consumption of each assignment it makes and the energy consumed
by running the assigned core in P4 for the same amount of time from the energy
budget for the simulation. A heuristic utilizing start-time cancellation adds the same
amount of energy back to the energy budget when a task is canceled.

If we denote the heuristic’s estimate of the remaining energy at time-step #; as
£ (17), the amount of time left in the 12-hour simulation trial as f.em, the total number
of cores in the system as cioal, and the average task execution time (the average
execution time of all tasks over all machines and all P-states) as f,yg, We can define a
multiplier ¢y and express our “fair share” threshold as

Stair (1) = (Cmu] x & (tl))/ (frem X Ctotal) / tavg- (6)

This is the estimated energy remaining divided by an estimate of the total number of
tasks that could be executed on all cores until the end of the simulation.

To deal with task-arrival bursts, we change ¢y, based on the average queue depth
of the system (the average of the number of tasks queued for execution or currently
executing, at a single time-step). In our simulations, the best results were obtained
using values of ¢y = 0.8 for an average queue depth less than 0.8, ¢y = 1.2 for an
average queue depth of 0.8 to 1.2, and ¢y = 2.0 for any average queue depth greater
than 1.2.

Our robustness filter restricts the set of feasible assignments based on a probability
threshold we denote pgresh- The filter eliminates potential assignments of task z to
core k of multicore processor j in node i and P-state & where p(i, j, k, 7, 1, 2) <
Pthresh (i-€., potential assignments to node i, multicore processor k, core j, and P-state
7 which will not increase the number of expected on-time completions by at least
the probability threshold). Empirically, we determined that a threshold of ppresh =
0.5 worked well for limiting the set of feasible assignments without restricting a
heuristic to only high-performance (and therefore high energy consumption) P-state
assignments.

5.7 Start-time cancellation

As mentioned in Sect. 3.2, a heuristic can choose to cancel a task when the task is
ready to start executing. When our system is oversubscribed, the buildup of tasks in
each queue causes the completion-time distribution for any potential task assignment
to have a broad pmf, which is the result of the large number of convolutions needed
to create it. A wide completion-time pmf is generally more uncertain than a narrow
one, and this extra uncertainty increases any heuristic’s probability of making a poor
assignment.

By allowing a heuristic to cancel tasks exactly when they are ready to execute, the
impact of uncertainty during the original task assignment can be partially mitigated.

@ Springer

Deadline and energy constrained dynamic resource allocation 339

When a task is ready to begin execution, its completion-time distribution is given by
the current time convolved with the task’s execution-time distribution for its assigned
node and P-state. This distribution can be used to compute the probability of a task
completing by its deadline with greater certainty than at assignment time, and the
heuristic can then use this information to avoid spending energy executing tasks that
will likely miss their deadlines anyway.

Our start-time cancellation mechanism computes the completion-time distribution
of the task that is ready to begin execution and then finds the probability of it finishing
by its deadline. If the task has a probability of completing by its deadline that is less
than an empirically-determined constant (30% in our simulations), the task is not
executed. The scheduler may cancel several tasks in a single queue before finding
one that has a sufficient chance of completing by its deadline.

When start-time cancellation is used, the heuristic must anticipate the effects of
cancellation when making scheduling decisions. This consists of predicting which
tasks in MQ(, j, k,l) will be canceled. This is accomplished by comparing the
completion-time distribution for each task in MQ(, j, k,[) with the task’s deadline
when calculating the stochastic completion time, robustness, or number of tasks in
a queue, as described in Sect. 4. This gives an estimate of |[MQ(, j, k,[)|, but task-
completion probabilities can change over time.

6 Simulation environment

For our simulations, we constrain our cluster configuration to limit our simulation ex-
ecution times. We limit the number of multicore processors per node, n(i), to values
from one to four. We limit the number of cores per multicore processor, c(i), to val-
ues from one to four. We also limit the total size of our cluster, N, to eight compute
nodes. Finally, we assume that the efficiency of power supplies (e(i)) varies from at
least 90% to at most 98% efficient.

A simulation trial in our environment consists of a collection of dynamically-
arriving tasks. Each task’s type is selected uniformly at random from one of 100
task types. We generate a distribution describing the execution time of each task
type on each machine using the CVB method described in [7], with the parameters
Hask = 750, Viask = 0.25, and Vipaen = 0.25. Our entire simulation consists of four
sets of 50 simulation trials, with the task arrival times, task deadlines, and task types
varying across simulation trials. The task arrival rate varies between each set of 50
trials to study the effects of increasing and decreasing oversubscription during a task
burst. All other parameters are held constant. Note that the simulated actual task exe-
cution times are randomly sampled from the execution time distributions during each
trial, and so these vary across simulation trials.

In our simulations, we consider a bursty arrival rate [22]. We use three different
arrival patterns consisting of a varying frequency of evenly-spaced task-arrival bursts
with a lull of arrivals between bursts, with all bursts and lulls in a simulation having
the same duration. This effectively makes the system undersubscribed between task
arrival bursts, which allows heuristics and filters to try to conserve energy. Our task
arrivals follow a Poisson process (as in [26]), and we define an equilibrium rate Aeq

@ Springer

340 B.D. Young et al.
2 2
© ©
3)"fas(5 lfas(
] 5]
¥ Astow [% Asiow [1
£ £ R R R
0 6 9 12 0 3 6 9 12
. time [hours] X time [hours]
a: low-frequency arrival pattern b: medium-frequency arrival pattern
° - -
©
: - M
£
]
% Asiow [1
£ R R R
0 3 6 9 12
time [hours]

c: high-frequency arrival pattern

Fig. 3 The three task arrival patterns. The low-frequency arrival pattern is shown in a, the medium-fre-
quency arrival pattern is shown in b, and the high-frequency arrival pattern is shown in ¢

such that the system is perfectly subscribed (all tasks complete by their deadlines
with no energy to spare) if all tasks arrive following a Poisson process with this rate
(in our simulations, Aeq = 1/28 ~ 0.0357). From this parameter, we then define a
fast rate Afygc and a slow rate Aglow such that task arrivals following a Poisson pro-
cess with the fast rate will cause the system to be oversubscribed, and task arrivals
following a Poisson process with the slow rate will cause the system to be undersub-
scribed (in our simulations, Aggt = 1/18 & 0.056, and Agow = 1/48 =~ 0.0208). With
these parameters, we generate all the task arrivals for a single simulation trial using a
Poisson process where the rate is Ag,g for the task arrival bursts and Agjoy for the task
arrival lulls. This varies the arrival rate such that the sum of the task-arrival bursts
takes 50% of the 12-hour simulation trial, and the sum of the task-arrival lulls takes
50% of the simulation trial. The arrival rates are constant across each set of 50 sim-
ulation trials, but the arrival times may vary considerably. Figure 3 shows the three
arrival patterns (low-frequency, medium-frequency, and high-frequency) used in our
simulation trials.

For our simulation study, task deadlines are set for each task as the sum of its
arrival time, the average execution time of its task type over all machines and all
P-states, and a constant “load factor.” The “load factor” represents the anticipated
waiting time of a task before it begins execution. We assign deadlines assuming that
each task will not have to wait longer than the #,y, which we compute as the average
execution time of all task types across all machines and all P-states (in our simula-
tions, t,yg A~ 1353). We can then define the load factor as t,yv,; the actual load will be
higher when the arrival rate is As,g, and lower when the arrival rate is Agow.

The clock-speed profile for the five P-states of each core is specified by a set of
five multipliers that scale the execution time distributions of a task executing on that
core to reflect a higher or lower performance. The multipliers for each P-state are
calculated by adding a random sample from a uniform distribution to the previous
multiplier (in effect increasing the performance by a random percentage between
15% and 25%). For all cores, the minimum P-state multiplier was never less than 42%
of the maximum, implying that the minimum operating frequency was at least 42%
of the maximum (there are current AMD Phenom processors with similar frequency
ratios [2]).

@ Springer

Deadline and energy constrained dynamic resource allocation 341

The power consumption profile for the five P-states of each core is calculated using
the standard CMOS dynamic power dissipation formula (recall that power used by
other system components is assumed constant and has already been accounted for
in the energy constraint). If A is the number of transistor switches per clock cycle,
C is the capacitive load, V is the supply voltage, and f is the operating frequency,
then the capacitive power dissipation is

P.=AxCpxV*xf. (7)

We first calculate the power consumption in the highest P-state for each core by sam-
pling a uniform random distribution between 125 and 135 watts. We then sample a
uniform random distribution between 1.000 and 1.150 to get a low P-state voltage,
sample a uniform random distribution between 1.400 and 1.550 to get a high P-state
voltage, calculate the voltage numbers for the remaining P-states via linear interpola-
tion, factor A x Cr, into a constant, and use our voltage and frequency values for each
P-state to compute a power consumption value. In practice, this results in a power
consumption for the low P-state of about 25% that in the high P-state (again, there
are current AMD Phenom processors with similar power consumption values [2]).

The energy constraint for our simulation (™) is the length of a simulation trial
(12 hours) multiplied by the average power consumption over all compute nodes
operating in P, multiplied by the total number of cores in the system. This is the
amount of energy required to run the entire system for 12 hours in P,. Because the
deadlines are tight and some tasks need to execute in high-performance P-states to
complete by their deadlines, this amount of energy will be insufficient to finish all
tasks by their deadlines, which will force heuristics to make a trade-off.

7 Results

Box-and-whiskers plots for the results of each heuristic and its variations are shown
in Figs. 4, 5, and 6. In each figure, “none,” “en,” “rob,” and “en-+rob” represent the
results of the heuristic with no filtering, energy filtering only, robustness filtering only,
and both energy and robustness filtering, respectively.

We first note that robustness filtering alone (“rob”) has very little effect on any
heuristic except RAND, regardless of the task-arrival burst frequency. This is be-
cause all of the heuristics except RAND are in some way optimizing for time. SQ
assigns tasks to the shortest queue, with ties broken by the task’s minimum expected
execution time. MECT greedily minimizes task completion times. LL weights ex-
pected energy consumption by robustness. For these heuristics, the robustness filter
rarely eliminates the assignment that would have been chosen by the heuristic with-
out filtering. Unlike the other heuristics, RAND chooses from among the feasible
assignments at random. The robustness filter limits the feasible assignments to those
with at least a 30% chance of completing the task by its deadline, which gives RAND
a more robust set of assignments to choose from and increases the percentage of tasks
completed by their deadlines.

Although energy filtering (“en”) is better than no filtering (“none”) or robustness
filtering (“rob”) with SQ, MECT, and LL when start-time cancellation is used, it

@ Springer

342 B.D. Young et al.

100 no cancellation SQ __ start-time cancellation 100 no cancellation MECT _start-time cancellation
° I I I T | o N —— 1

(53 D
= = =3
fol T . =
£ = S == £ = = == —

8 === 5= == 8 === == 5=
260 260

[Z] [2]
i s
k-] k]

040 40

j=2] (=2
s g

= =4

820 820

[[

(=3 o

0"HoRe —en fob en+rob one en Tob en+rob 0" Hone —en Tob en+rob one en Tob en+rob
filter used filter used

100 no cancellation LL _ start-time cancellation 100 no cancellation RAND _start-time cancellation
3 = == == =il
B EHl s
E_80 i S o - an

8 == = = = 8 B T -
260 260 o

B [} T o g
fi] S == =
k] k-]

g 40 g 40
s s = T

= =4 P E=

820 820

[[

o o

0Hore —en fob en+rob one en Tob en+rob 0" fohe —en Tob en+rob one en Tob en+rob
filter used filter used

Fig.4 The percentage of missed deadlines for all variations of all heuristics with the low-frequency arrival
pattern are shown with a box-and-whiskers plot

100 no cancellation SQ _ start-time cancellation 100 no cancellation MECT _ start-time cancellation
3 T = = — L3 e L =
B — b | 5
280 [p— — —=E 280p B I S g
£ === = £ == = =
Q Q
o o 1
260 - 260
[} [2]

& &

b k)

0 40 040
j=2] (=]
£ £
c c
820 820
3 [

Q Q

0 fone —en Tob en+obi none en Tob Gn+ob 0 fone —en Tob en+iob mone en Tob Gn+ob
 filter used . . filter used) .

100 no cancellation LL start-time cancellation 100 no cancellation RAND _start-time cancellation
3 =3 =1 B
3 ES 3
280 - - 280
£ == = = = £ ——=
Q Q . e
o o
260 260 ESNE - N
] % 1 —4
2 £ ==L
b b
0 40 040
g § [&5 L
€ £ ==
820 820 ==
3 [

Q Q

0 fione —en Tob en+obi none en Tob Gn+ob 0™fone —en Tob en+iob mone en Tob Gn+ob
filter used filter used

Fig. 5 The percentage of missed deadlines for all variations of all heuristics with the medium-frequency
arrival pattern are shown with a box-and-whiskers plot

@ Springer

Deadline and energy constrained dynamic resource allocation 343

100 no cancellation SQ _start-time cancellation 100 no cancellation MECT _start-time cancellation
3 T == - =1 B =S = ==
s e s [L o R E
E [= = = E |[= = = =
o . o =
260 260
[Z} [Z]

s &
k-] k]
040 o 40
j=2] j=2)
s g
= =4
820 820
[[
o o
0" Hohe —en Tob en+rob one en Tob en+rob 0" fone —en Tob en+rob one en Tob en+rob
 filter used)) ~filter used . .

100 no cancellation LL start-time cancellation 100 no cancellation RAND _start-time cancellation
B == == == =N
[— — e (7}

E’ 80 E_80

8 = = = = 8 == —1

== = ==

260 260 = -

[} [Z]

s & ==

k-] k]

40 o 40

g g =

€ € o

820 820

[3

[(=8

0" Hohe —en Tob en+rob one en Tob en+rob 0" fohe —en Tob en+roB mone en Tob en+rob

filter used filter used

Fig. 6 The percentage of missed deadlines for all variations of all heuristics with the high-frequency
arrival pattern are shown with a box-and-whiskers plot

is not necessarily better without start-time cancellation. This is because a heuristic
using energy filtering alone will always schedule a task, even if that task has a 0%
probability of completing by its deadline. Energy filtering alone cannot eliminate all
potential assignments. Without start-time cancellation, this results in the execution of
tasks that have little probability of completing by their deadlines, which increases the
oversubscription of the system. Start-time cancellation ameliorates this problem by
canceling tasks that have less than a 0.1% chance of completing by their deadlines
before they start executing. We note that energy filtering alone (“en”) is not better
than no filtering (“none”) when start-time cancellation is used for RAND because
this filtering leaves RAND with only low-performance feasible assignments.

We next note that, apart from RAND and heuristics using energy filtering only,
start-time cancellation does not necessarily improve the performance of a heuristic.
In theory, it should always be beneficial to cancel a task that has a 0% probabil-
ity of completing by its deadline. However, each heuristic must anticipate task can-
cellation to make appropriate resource allocation decisions: MECT to find correct
expected completion times, SQ to determine correct queue depths, and LL to deter-
mine correct completion-time distributions and therefore robustness values. However,
a task’s probability of completion may change as previously-assigned tasks are ex-
ecuted and/or canceled. This means that, in practice, a heuristic may anticipate a
cancellation that does not occur or fail to anticipate one that does. This results in a
heuristic allocating tasks based on an incorrect assumption of the future state of the
system, which can lead to poor scheduling decisions. Figure 7 shows an example of
a task’s probability of completion changing over time.

@ Springer

344 B.D. Young et al.

1 1 — 1=
o
g = £
08| o8f T 082
= @ (o3
3t o ©
©: : :
206 : 206 206
o o o
=] E=} =]
[} 2 [}
S 04 S 04f S 04
02} 1 02} : 0.2
S N S A o ‘ f oL \
3 35445 5 55 6 65 7 6 7 8 9 10 11 8 9 10 11 12 13 14
time time time
a: completion-time of task 1 at time 3.5 b: completion-time of task 2 at time 3.5 c: completion-time of task 3 at time 3.5
1 — T T 1 — T T 1 — T
°H
E: o [N
= £ £t
08 = 08F T 08f 1
= (08 @
30 o °:
©: : :
206 : 206 206
o o o
=] 2 2
[} [e
S 04 4 04} 8 04}
0.2 : 1 02} 02}
ol i . . 0 , : ol . 1 .
3 35445 5 55 6 65 7 6 7 8 9 10 11 6 657 758859 9510
time time time
d: completion-time of task 1 at time 4.5 e: completion-time of task 2 at time 4.5 f: completion-time of task 3 at time 4.5

Fig. 7 A task’s probability of completion changing over time. The completion-time for the currently
executing task (task 1) at time 3.5 is shown in a. The completion-time for queued task 2 at time 3.5 is
shown in b, and task 2 has a 15% chance of completing by its deadline (7.5). The completion-time for
queued task 3 at time 3.5 is shown in ¢, and task 3 has a 0% chance of completing by its deadline (8.5).
The completion-time for task 1 has been updated to time 4.5 in d. In e, the completion-time of task 2 at time
4.5 now indicates that task 2 has a 0% chance of completing by its deadline (7.5). In f, the completion-time
of task 3 at time 4.5 no longer includes the execution time of task 2 (which will be canceled), and task 3
now has a 75% probability of completing by its deadline

The results indicate that arrival pattern (low-frequency, medium-frequency, or
high-frequency) has little effect on heuristic performance. For instance, we no-
tice a roughly 4% median improvement in LL. with energy and robustness filtering
(“en—+rob”) between Fig. 4 and Fig. 6. However, the intervals between the min and
max values of all results decrease as the frequency of task-arrival bursts increases.
This indicates that the heuristics and their filters perform more consistently across
trials when there are more short task-arrival bursts. This is because the shorter peri-
ods of oversubscription cause fewer misses from poor allocation decisions.

Finally, we note that the best performance (a median of about 15% missed dead-
lines) was obtained by several heuristics. Note that our limited analysis of the dataset
indicated that the difficulty of the workload (tight deadlines and energy constraint)
caused a median of at least 7% of all missed deadlines. This indicates that an appro-
priate choice of filtering mechanisms is more important than the choice of heuristic.
The LL, MECT, and SQ heuristics using energy and robustness filtering (‘“en+rob”)
all achieved comparable median performance on each of the three arrival patterns.
With the combined energy and robustness filters, these heuristics sometimes leave

@ Springer

Deadline and energy constrained dynamic resource allocation 345

tasks unassigned. By leaving tasks unassigned, the heuristics do not have to consider
those task’s pmfs in completion-time or queue depth computations. This reduces the
uncertainty in the resource allocations, and leads to better scheduling decisions.

8 Conclusions and future work

In this paper, we developed a model of robustness and validated its use in alloca-
tion decisions. We also presented two filters, two adaptations of existing heuristics,
and one new heuristic that can make assignments utilizing robustness and accounting
for an energy constraint. Based on our simulation results, we can conclude that ap-
propriate filtering mechanisms are fundamental to improving heuristic performance.
Designers of resource management systems can utilize our results as modular addi-
tions to a scheduler to improve energy-efficient performance.

In future work, we would first like to perform a sort of Fourier analysis with our
three arrival patterns and study the behavior of all the heuristics and filters. MECT, for
instance, will perform best on a low-frequency arrival pattern if a single task arrival
burst starts at the beginning of the simulation and ends at six hours. This is because
MECT does not attempt to conserve energy, and will miss fewer tasks after using its
energy budget. Conversely, MECT will perform poorly on a low-frequency arrival
pattern with a single task-arrival burst starting at 6 hours and ending at 12 hours
because it will waste energy when the system is undersubscribed instead of saving it
for the arrival burst.

For other future work, we would first like to explicitly consider memory-intensive
tasks in our workload and energy model. We plan to do this would be by associating
a memory-intensive weighting with each task type. By multiplying using this factor
when computing execution time and power consumption for different task types, we
can model memory-intensive tasks that benefit less from DVFS. With the addition of
memory-intensive tasks, we also will be able to consider memory energy consump-
tion in our model. Considering a workload with tasks that do not benefit from DVFS,
e.g., [/O-bound or communication-intensive tasks, would be useful. It may be possi-
ble to do this by adding a modular level on top of any existing heuristic that intercepts
these task types and runs them at their “matched” P-state. We also would like to study
more complex mechanisms for task cancellation. This could involve examining all
tasks in a queue for cancellation, instead of just the task at the head of each queue.
It is possible to derive a distribution describing a task’s probability of being canceled
in the current system, and such a distribution could be used to better anticipate task
cancellation. We could also extend our model to include more energy-conserving
techniques than just DVFS. This would include mechanisms such as ACPI G-states,
power gating, and hard-disk power management. The addition of ACPI G-states and
hard-disk power management will allow us to add fan and hard-disk energy con-
sumption to our model. We also want to use full probability distributions to represent
power consumption, instead of assuming that power consumption is a constant rep-
resenting an average value (as described in Sect. 6). We intend to expand our model
to consider tasks with varying priorities, and a system with the ability to stop tasks
that miss their deadlines. Finally, we want to consider heuristics that can reassign the
batch of tasks that have been scheduled but are not yet executing.

@ Springer

346 B.D. Young et al.

Acknowledgements The authors thank Greg Pfister and Jerry Potter for their comments on this research.
A preliminary version of portions of this work appeared in [31]. We significantly expand on the work in
[31] by adding a novel mechanism to cancel tasks before they start executing and by simulating with a
variety of arrival patterns. More importantly, we directly deal with energy wasted by idling processors by
simulating against a 12-hour window of tasks, where the research in [31] worked with a window of 1,000
tasks. The 12-hour window also makes our research more applicable to real systems.

This research was supported by the National Science Foundation under grant number CNS-0905339,
and by the Colorado State University George T. Abell Endowment. This research used the CSU ISTeC
HPC System supported by NSF Grant CNS-0923386.

References

1. Advanced configuration and power interface specification (2010). http://www.acpi.info/
DOWNLOADS/ACPIspec40a.pdf. Accessed 2 Mar 2011

2. Advanced Micro Devices (2010) AMD Family 10h Desktop Processor Power and Thermal Data
Sheet. http://support.amd.com/us/Processor_TechDocs/43375.pdf. Accessed 2 Mar 2011

3. Advanced Micro Devices (2010) AMD PowerNow! Technology. http://www.amd.com/us/products/
technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx. Accessed 2 Mar
2011

4. Advanced Micro Devices (2010) BIOS and Kernel Developer’s Guide (BKDG) for Family 10h Pro-
cessors. http://support.amd.com/us/Processor_TechDocs/31116.pdf. Accessed 2 Mar 2011

5. Ali S, Maciejewski AA, Siegel HJ (2008) Perspectives on robust resource allocation for heterogeneous
parallel systems. In: Handbook of parallel computing: models, algorithms, and applications. Chapman
& Hall/CRC Press, Boca Raton, pp 41-1-41-30

6. Ali S, Maciejewski AA, Siegel HJ, Kim JK (2004) Measuring the robustness of a resource allocation.
IEEE Trans Parallel Distrib Syst 15(7):630-641

7. Ali S, Siegel HJ, Maheswaran M, Hensgen D (2000) Representing task and machine heterogeneities
for heterogeneous computing systems. Tamkang J Sci Eng, Special 50th Anniversary Issue 3(3):195—
207.

8. Apodaca J, Young D, Bricefio L, Smith J, Pasricha S, Maciejewski AA, Siegel HJ, Bahirat S, Khemka
B, Ramirez A, Zou Y (2011) Stochastically robust static resource allocation for energy minimization
with a makespan constraint in a heterogeneous computing environment. In: 9th ACS/IEEE interna-
tional conference on computer systems and applications (AICCSA *11)

9. Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2001) Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In: 22nd IEEE real-time systems symposium (RTSS ’01),
pp 95-105

10. Barbosa J, Moreira B (2009) Dynamic job scheduling on heterogeneous clusters. In: 8th international
symposium on parallel and distributed computing (ISPDC ’09), pp 3—-10

11. Bohrer P, Elnozahy EN, Keller T, Kistler M, Lefurgy C, McDowell C, Rajamony R (2002) The case
for power management in web servers. In: Power aware computing. Kluwer Academic, Norwell,
pp 261-289

12. Bricefio L, Siegel HJ, Maciejewski AA, Oltikar M, Brateman J, White J, Martin J, Knapp K (2011)
Heuristics for robust resource allocation of satellite weather data processing on a heterogeneous par-
allel system. IEEE Trans Parallel Distrib Syst 22(11):1780-1787

13. Bricefio LD, Khemka B, Siegel HJ, Maciejewski AA, Groer C, Koenig G, Okonski G, Poole S (2011)
Time utility functions for modeling and evaluating resource allocations in a heterogeneous computing
system. In: 20th heterogeneity in computing workshop (HCW ’11), pp 1-14

14. CSU Information Science and Technology Center (2011) ISTeC Cray High Performance Computing
(HPC) System. http://istec.colostate.edu/istec_cray. Accessed 15 June 2011

15. Intel Corporation (2010) Frequently asked questions for Intel SpeedStep Technology. http://www.
intel.com/support/processors/sb/CS-028855.htm. Accessed 2 Mar 2011

16. Iosup A, Epema D (2010) Grid workloads. IEEE Internet Comput 15(2):19-26

17. Kim JK, Siegel HJ, Maciejewski AA, Eigenmann R (2008) Dynamic resource management in energy
constrained heterogeneous computing systems using voltage scaling. IEEE Trans Parallel Distrib Syst
19(11):1445-1457

@ Springer

http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://support.amd.com/us/Processor_TechDocs/43375.pdf
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://support.amd.com/us/Processor_TechDocs/31116.pdf
http://istec.colostate.edu/istec_cray
http://www.intel.com/support/processors/sb/CS-028855.htm
http://www.intel.com/support/processors/sb/CS-028855.htm

Deadline and energy constrained dynamic resource allocation 347

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Kim KH, Buyya R, Kim J (2007) Power aware scheduling of bag-of-tasks applications with deadline
constraints on dvs-enabled clusters. In: 7th IEEE/ACM international symposium on cluster computing
and the grid (CCGrid ’05), pp 541-548

Koomey JG (2007) Estimating total power consumption by servers in the US and the world. Tech rep,
Lawrence Berkeley National Laboratory. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.87.5562&rep=rep1&type=pdf

Koomey JG, Belady C, Patterson M, Santos A, Lange KD (2009) Assessing trends over time in per-
formance, costs, and energy use for servers. Tech rep, Lawrence Berkeley National Laboratory, Stan-
ford University, Microsoft Corporation, and Intel Corporation. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.87.5562&rep=rep | &type=pdf. Accessed 2 Mar 2011

Leon-Garcia A (1989) Probability & random processes for electrical engineering. Addison-Wesley,
Reading

Li C, Bettati R, Zhao W (1998) Response time analysis for distributed real-time systems with bursty
job arrivals. In: 1998 international conference on parallel processing (ICPP *98), pp 432—440

Li YA, Antonio JK, Siegel HJ, Tan M, Watson DW (1997) Determining the execution time distribution
for a data parallel program in a heterogeneous computing environment. J Parallel Distrib Comput
44(1):35-52

Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF (1999) Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. J Parallel Distrib Comput 59(2):107-121
Phillips CL, Parr JM, Riskin EA (2003) Signals, systems, and transforms. Pearson Education, Upper
Saddle River

Smith J, Apodaca J, Maciejewski AA, Siegel HJ (2010) Batch mode stochastic-based robust dynamic
resource allocation in a heterogeneous computing system. In: 2010 international conference on paral-
lel and distributed processing techniques and applications (PDPTA ’10), pp 263-269

Smith J, Chong EKP, Maciejewski AA, Siegel HJ (2009) Stochastic-based robust dynamic resource
allocation in a heterogeneous computing system. In: 38th international conference on parallel pro-
cessing (ICPP °09)

Smith J, Siegel HJ, Maciejewski AA (2009) Robust resource allocation in heterogeneous parallel
and distributed computing systems. In: Wah BW (ed) Wiley encyclopedia of computer science and
engineering, vol 4. Wiley, Hoboken, pp 2461-2470

Wasserman L (2005) All of statistics: a concise course in statistical inference. Springer, New York
Xian C, Lu YH, Li Z (2008) Dynamic voltage scaling for multitasking real-time systems with uncer-
tain execution time. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(8):1467-1478

Young D, Apodaca J, Bricefio L, Smith J, Pasricha S, Maciejewski AA, Siegel HJ, Bahirat S, Khemka
B, Ramirez A, Zou Y (2011) Energy-constrained dynamic resource allocation in a heterogeneous
computing environment. In: 4th international workshop on parallel programming models and systems
software for high-end computing (P2S2 ’11)

Yu H, Veeravalli B, Ha Y (2008) Dynamic scheduling of imprecise-computation tasks in maximizing
QoS under energy constraints for embedded systems. In: 2008 Asia and South Pacific design automa-
tion conference (ASPDAC °08), pp 452-455

@ Springer

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5562&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5562&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5562&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5562&rep=rep1&type=pdf

	Deadline and energy constrained dynamic resource allocation in a heterogeneous computing environment
	Abstract
	Introduction and problem statement
	Related work
	System model
	Cluster configuration
	The workload
	Energy consumption

	Robustness
	Overview
	Stochastic task completion time
	Robustness calculation

	Heuristics and filters
	Overview
	Shortest Queue heuristic
	Minimum Expected Completion Time heuristic
	Lightest Load heuristic
	Random heuristic
	Energy and robustness filters
	Start-time cancellation

	Simulation environment
	Results
	Conclusions and future work
	Acknowledgements
	References

