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ABSTRACT

Energy-efficient resource allocation within computing sys-
tems is important because of the growing demand for, and
cost of, energy. In this paper, we study the problem of
energy-constrained static resource allocation of a collection
of communicating tasks to a heterogeneous computing en-
vironment. Our goal is to maximize the probability (calcu-
lated via Monte Carlo method) that our collection of tasks
completes by both a given deadline and an energy constraint
in an environment where task execution times and communi-
cation times are uncertain. We model a collection of energy-
saving mechanisms from the ACPI standard that can be
used to balance the energy consumption and execution time
of our tasks. We then design and evaluate (via simulation)
a set, of heuristics for allocating resources in our system. Fi-
nally, we show that our novel adaptation of existing heuris-
tics can greatly improve performance in our environment.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—
scheduling
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1. INTRODUCTION

Energy consumption of servers and data centers is a grow-
ing concern [1,2]. Some studies predict that the annualized
cost of powering and cooling servers may soon exceed the an-
nualized cost of equipment acquisition [3]. This could force
some computing systems to operate under a constraint on
the amount of energy used to complete workloads, especially
given the rising cost of energy and the energy requirements
of upcoming exascale systems [4,5].

In this research, we study the problem of statically al-
locating a collection of communicating tasks to a hetero-
geneous computing system (heterogeneous across compute
nodes in terms of both performance and power efficiency)
while considering energy. The communicating tasks form a
Directed Acyclic Graph (DAG), and our goal is to maxi-
mize the probability of completing all the tasks in this DAG
under two constraints: a system deadline and a system en-
ergy consumption budget. The problem of allocating a set
of dependent tasks with a common deadline to a heteroge-
neous system while accounting for energy consumption has
been explored before, e.g., [6-8]. We study the same prob-
lem, but we include stochastic task execution and communi-
cation times, a broader set of energy-conserving techniques
derived from the ACPI standard [9], a simple mechanism
to approximately model the effects of slowdown caused by
interference between cores of the multicore processors, and
using the concept of robustness (described in Section 4) in
the objective functions of some heuristics.

We approach this problem by first modeling a heteroge-
neous computing system, and then deriving resource allo-
cation heuristics that are capable of leveraging the system
heterogeneities to maximize the probability of completing all
tasks by both a common deadline and a given energy con-
straint. We then compare the performance of these heuris-
tics via simulation. Our three heuristics are inspired by con-
cepts in the existing literature [10]: two are adaptations to
our environment needed to explore the solution space while
the third is a novel variation designed to directly balance



completion time and energy consumption. Our DAG model
(described in Section 3.2) consists of a graph of dependent
tasks from the literature [11]. Our heterogeneous comput-
ing platform model provides a range of energy-conserving
mechanisms for heuristics to use (described in Section 3.3).
These include controlling energy consumption via task-to-
machine mapping and processor Dynamic Voltage and Fre-
quency Scaling (DVF'S).

In this paper, we make the following contributions: (a) we
provide a method to compute the energy characteristics of
our system that we believe captures the salient attributes of
energy consumption without being overly complex, (b) we
design a model of robustness specifically for this environ-
ment and demonstrate its usefulness for scheduling, (c) we
design and present three heuristics for our environment (in-
spired by concepts in the previous literature), one of which
utilizes our robustness model and attains significantly bet-
ter performance than the others, and (d) we design a model
of our heterogeneous computing environment that simulates
the effects of slowdown due to interference between tasks
executing on different cores.

2. RELATED WORK

There has been considerable research regarding schedul-
ing DAGs onto heterogeneous systems with an emphasis on
robustness (a good survey can be found in [12]). Our re-
search, however, focuses specifically on energy-aware alloca-
tions, and our definition of robustness is more relevant to
our domain.

Similar to the work in [6], we use DVFS to balance power
consumption and computation time of tasks in a DAG ex-
ecuting on a heterogeneous system. However, we combine
this with stochastic task execution and communication de-
lay times. We also consider the energy consumption of
other system components (e.g., memory, NIC) with energy-
conserving operating modes. In this way, we can capture
many of the salient attributes of a real computing system
with a model that is still widely applicable.

The authors of [8] study the allocation of a DAG with a
deadline (in the form of timing constraints) in a real-time
system. They develop “shared slack reclamation” heuristics
to conserve energy while scheduling the DAG to meet timing
constraints. The authors then prove some formal properties
of the algorithms and simulate these heuristics over a collec-
tion of important DAGs. In our study, we work with stochas-
tic execution times instead of known (deterministic) scalar
values. We also include energy-conserving mechanisms in
addition to DVFS, and we approximate the effects of inter-
ference between the cores of multicore processors.

The research in [7] is also related to our work. The authors
focus on energy and makespan-constrained DAG allocation
on a heterogeneous system, but without the stochastic na-
ture of our study. They are also able to build an effective
algorithm (similar to the work in [13]), but our system model
includes more of the energy-saving mechanisms present on
current systems.

3. SYSTEM MODEL
3.1 System Configuration

We model our computing system as a collection of hetero-
geneous compute nodes with inconsistent performance [14]

(i.e., machine A may be faster than machine B for some
tasks and slower for others). Each compute node 4 con-
tains a set of homogeneous multicore processors, and each
multicore processor j contains a set of homogeneous cores,
so performance is heterogeneous across nodes and homo-
geneous within each node. For convenient notation, let n
denote the total number of compute nodes, m (¢) denote a
list of all the multicore processors in node i, ¢ (2) denote a
list of all the cores in node 4, and ¢ (%, j) represent a list of
all the cores in multicore processor j of compute node 1.

Cores are the basic processing elements in our model. Our
model allows each core to execute a single task at a time
with no multithreading or preemption, as is the case on the
compute nodes of the ISTeC Cray XT6m teraflop computing
system at Colorado State University [15]. In this way, a task
will execute to completion once started.

Even though the cores of each multicore processor execute
single tasks without preemption or multithreading, they still
interfere with each other by sharing processor features, e.g.,
shared L3 cache. We model the effects of this interference
by increasing the execution time of temporally-overlapping
tasks executing on the same multicore processors. More
specifically, the execution time of a task is increased by a
fixed percentage while simultaneously executing with a task
on another core of the same multicore processor. This effect
is cumulative in our model, so each additional task executing
on another core of the same multicore processor will increase
the execution time of all other tasks due to memory inter-
ference. We use a fixed-percentage increase based on our
specific workload and system environment, but other values
could be used. This approach follows real-world observa-
tions that the actual slowdown due to multicore interference
is highly workload-dependent and system-specific [16,17].

Cores can vary the execution speed of tasks by using Dy-
namic Voltage and Frequency Scaling (DVF'S). Based on the
ACPI standard [9] implemented in many commodity pro-
cessors [18,19], our model provides each core with a set of
performance states (P-states) that decrease instruction ex-
ecution speed at the expense of increased core energy con-
sumption. We allow the individual cores of a multicore pro-
cessor to change P-states independently (as allowed in many
current processors such as those from AMD [20]), but we dis-
allow P-state transitions once a task has started executing
to minimize the energy overhead of frequent P-state transi-
tions. We also ignore the time needed to transition between
P-states because that time is small (typically hundreds of
microseconds [20]) compared to our task execution times
(typically tens of seconds) and communication times (typi-
cally seconds).

In addition to the multicore processors, each compute
node in our model contains a Network Interface Card (NIC)
used to facilitate communication between cores on differ-
ent compute nodes. We model the communication between
nodes as a sum of two components: a delay time represent-
ing network congestion and packet collisions between the two
nodes and a transfer time needed to move each unit of data
from one compute node to another multiplied by the total
amount of data to be sent. To model an uncertain communi-
cation time, we modify the existing work to use a stochastic
delay time with a deterministic unit-transfer time. More
specifically, if we denote the deterministic time required to
move one unit of data from any core on compute node i to
any core on a different compute node m as tynit (i,m) (a



scalar value) and the stochastic delay caused by congestion
and collisions in the network between the same two compute
nodes as tqeiay (i, m) (a probability mass function or pmf),
then the time required to transfer u units of data between
compute nodes i and m is:

teomm (3, m) = (N X tunit (3, m)) + tdetay (i,m) . (1)

We assume that cores can send and receive data while com-
puting, but our model currently requires synchronous com-
munication between compute nodes. We currently restrict
each compute node to send to only one compute node at a
time and receive from only one compute node at a time, but
the send and receive operations can happen simultaneously
even to different compute nodes.

In addition to the multicore processors and NICs, our sys-
tem model also includes a disk and memory in each node.
These are included to model energy consumption of the sys-
tem more accurately and are described in Section 3.3.

All of the compute nodes are managed by a single resource
manager that constructs a static (offline) schedule according
to a resource allocation heuristic and then executes tasks on
the computing system according to the schedule. A sched-
ule consists of a mapping of each task to a compute node,
multicore processor, core, and P-state. Each schedule also
includes an ordering of the communications between com-
pute nodes. In our current model, the ordering for both
tasks and communication is strictly followed at run time.

3.2 DAG of Tasks

In our environment, the DAG consists of a static collec-
tion of tasks with a single common deadline and an energy
constraint (budget) for execution. Dependencies among the
tasks (e.g., communications) are represented by the edges
of a DAG. We model task execution times as random vari-
ables, and our model assumes that a pmf that describes the
execution time of each task in each P-state on a core of each
compute node is provided (in practice, such pmfs can be gen-
erated from historical data, experimental trials, or analytical
techniques [21,22]). It is common in resource management
research to assume that information characterizing the ex-
ecution times of frequently-executed tasks can be collected,
e.g., [23,24]. In our collaborative work with Oak Ridge Na-
tional Labs, their environment (as well as others) frequently
executes similar types of tasks. This allows for the collection
of historical information about task execution times.

The dependencies between tasks in the DAG represent
communication in our model, meaning that each task con-
sumes data from its predecessors and provides data to its
successors. The amount of data sent from each task to its
successors is fixed and known in advance. We make the com-
mon assumptions that the data provided by a predecessor
task is only available once the task has completed and that
all data to be consumed by a successor task must be received
before computation can begin, e.g., [25].

We model a hard deadline for completion of all tasks in
the DAG (such deadlines can come from multiple sources,
e.g., QoS agreements, allocation limits). Similarly, we model
an energy constraint to complete the entire workload. We
focus on a single DAG in this paper, but it is straightforward
to apply the techniques proposed in this paper to multiple
DAGs that share a common deadline.

3.3 Energy Consumption

The energy consumed by the entire computing system can
be conceptualized as the sum of the energy consumed by the
system components over all of the individual time periods
when those components are not changing state. Because of
the dependencies mentioned in Section 3.2, some compute
nodes may be idle while others are still processing tasks,
and we account for this by measuring energy consumption
on all compute nodes in our system from the time that any
task in the DAG begins execution until the time that all
tasks in the DAG have finished executing. This approach
provides more realistic results than only measuring energy
consumption when compute nodes are active, but may result
in idle components consuming a large portion of the total
system energy if the DAG does not have enough parallelism
to keep the compute nodes busy. In this section, we describe
both the mechanisms our model provides to mitigate the
energy consumption of idle components and our method for
computing the total energy consumption of the system.

As mentioned in Section 3.1, the cores inside our com-
pute nodes can vary the execution speed of tasks by using
P-states from the ACPI standard [9]. We assume that every
core in the system has |p + 1| P-states available. In accor-
dance with the standard, we let Py denote the state with
the highest performance and highest power consumption,
and P, denote the state with the lowest performance and
lowest power consumption.

In addition to P-states, our model provides two power
states (C-states) for each multicore processor to conserve
power if and only if all of its cores are idle [9]. We let
Co denote the normal operating C-state in which the cores
are executing instructions, and C denote the low-power C-
state in which all cores are idle. While operating in Co,
any idle cores can minimize processor power consumption
by operating in P,. If any core in a multicore processor is
not idle, then the multicore processor cannot enter the Ci
state to conserve power. This behavior is consistent with
many current-generation AMD processors [20]. As with the
P-states mentioned in Section 3.1, we neglect the time re-
quired to transition between C-states because it is negligible
compared to average task execution times for our workloads.
Based on our observations of real processors, we model the
power consumption of a multicore processor idling in C as
a fixed smaller percentage of the power consumption of the
same multicore processor with all cores active and operat-
ing in P,. The model can be adapted to other systems by
changing this parameter.

Our model also includes energy consumption of the mem-
ory, hard disk, and NIC devices of each node. Our model
provides two device states (D-states) for each of these de-
vices to conserve power when idle: Dy denotes the active
state, and D denotes the idle state [9]. As in most systems,
our model considers the memory to be idle if all cores in the
compute node associated with the memory are idle (i.e., the
multicore processors are all in C1) and the NIC to be idle
if it is neither sending nor receiving data. We model the
hard disk as active half of the time when memory is active
to represent virtual memory access.

At the compute-node level, our model provides two global
states (G-states) to allow idle nodes to conserve power [9].
We let Gy denote the state in which a compute node has
started processing tasks on some core but has not finished
all its tasks and G represent the low-power state in which a



compute node has either not started processing tasks or has
completed processing all its tasks. We model the compute-
node energy consumption in (G as a small percentage of the
energy consumption in Gy with all devices in D; and all
multicore processors in C; (i.e., their idle states).

We allow compute nodes to enter G1 only before process-
ing any tasks or after finishing all tasks. This may seem
to be a somewhat artificial restriction: the compute node
could certainly be suspended while completely idle between
processing tasks. However, the time and energy overhead
required to suspend and resume a compute node is non-
negligible and does not save energy (in fact in some cases it
increases the energy consumed).

The power consumption of a processor normally varies
even within a given P-state. For all of the following calcu-
lations, we assume that power consumption of a core in a
specific P-state represents the time-average power consump-
tion of the system components for that P-state.

Consider a single core k of multicore processor j in node
¢ from time ¢, to t, operating in P-state Pjji (where P
must be P, if the core is idle). If we let p (P;;x) denote the
power consumed by a core of compute node i operating in
P-state P;j;x, then we can denote the energy consumed by
this core as:

en (4,5, k,ta, to) = (to — ta) X p (Piji) - (2)

If we let pct (i, 7, Cy) denote the fixed-percentage multi-
plier used to compute the energy consumed in C, as de-
scribed above (pct (4,7,Co) = 1 and 0 < pct (i,5,C1) < 1),
then we can use this along with equation 2 to compute the
energy consumed by a multicore processor j in node ¢ oper-
ating in state Cj; from time ¢, to ¢, as:

en (7:7.7.7 tllatb)

Z en (i7j7 k7 ta7tb) . (3)

Vkee(i,5)

= pet (i, §, Ciz) X

The energy consumption equations for the devices in the
system (disks, memory, NICs) are very similar, so only the
equation for a NIC is shown here. If we let pnrc (4, Dz)
denote the power consumed by a NIC in node i operating in
D-state D, then the energy consumed by a NIC in node ¢
operating in D-state D; from time t, to tp is:

ennic (ista,ty) = (to — ta) X pnic (i, Ds) . (4)

Let engev (i,taq,ts) represent the sum of the energy con-
sumed by all the devices (NIC, memory, disk) in node i
from time t, to time ¢p. If pct (i,Gs) denotes the fixed-
percentage multiplier used to compute the energy consumed
in G1 as mentioned above (such that pct (i,Go) = 1 and
0 < pct (i, G1) < 1), then the energy consumption of node i
operating in G-state G; from time ¢, to tp is:

en (i,ta, ty) = pet (i, G)

5
< | enaeo (i taste) + > en (i, ta, ty) )

vjiem(i)

Finally, we can write the system energy consumption from
time t, to t, as:

en (ta, ty) = Zen (z,ta,ts) - (6)

The above equations are impacted by the uncertainty in
communication and computation times described in Section
3.1. We will discuss this effect in more detail in Section 4.

4. ROBUSTNESS

Because task execution and communication delay times
may be uncertain [26-28], we use random variables to model
these times. We want our resource allocations to be “ro-
bust,” meaning that they mitigate the impact of these un-
certainties on our performance objective [29,30]. We can
more-precisely describe the robustness of our system by an-
swering three questions [31]: (1) What behavior makes the
system robust? (2) What uncertainties is the system robust
against? (3) How is the robustness of the system quanti-
fied? In our system model, an allocation is robust if it can
complete all tasks in the DAG by both the common dead-
line and the energy consumption constraint. The system
is robust against uncertainties in task execution time and
communication delay time. The robustness of the system is
quantified as the probability of completing all tasks by the
deadline and within the energy constraint.

We need to maximize the probability that all tasks will be
completed by the two constraints. This probability can be
directly computed from a completion-time distribution pmf,
but directly computing the completion-time distribution of
a scheduled DAG consisting of nodes with stochastic exe-
cution times is known to be #P-complete (computationally
intractable) [13,32]. To circumvent this problem, we use a
Monte Carlo method.

To compute the robustness of a schedule, we need to com-
pute the makespan and energy consumption. We first sam-
ple the pmfs for task-execution time and communication-
delay time to obtain scalar values. We then use those values
to compute the start and stop times for each task and each
node-to-node communication in the system, all while scaling
the schedule for interference (as described in Section 3.1).
Once this is finished, we can compute the completion time
of the schedule as well as the energy consumption (using the
equations in Section 3.3).

By repeating the above procedure 1000 times to find com-
pletion time and energy consumption pairs, we are essen-
tially performing a Monte Carlo evaluation of the schedule.
Each repetition randomly samples the distributions and pro-
vides another (completion time, energy consumption) pair
for the schedule. By comparing each pair to the deadline
and energy constraint, we can quantify our robustness as the
percentage of Monte Carlo trials that met both the energy
constraint and deadline. The variation in communication
and execution times results in considerable variation in the
energy consumption across Monte Carlo evaluations.

Figure 1 shows a graphical representation of the robust-
ness calculation. Using the procedure desribed above, we
find the completion time and energy consumption one thou-
sand times for a given assignment (schedule) of the DAG to
the system. Each pair of values is plotted as a single point,
and the percentage of pairs falling within both the energy
constraint (horizontal line) and deadline (vertical line) is the
robustness of the assignment.
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Figure 1: An example robustness computation

showing the results of 1000 Monte Carlo evaluations
with a given schedule. The result of each Monte
Carlo evaluation is shown as a single point. The
percentage of points falling within both the energy
constraint (the horizontal dotted line) and the dead-
line (the vertical dotted line) is equal to the robust-
ness of the schedule.

5. HEURISTICS

5.1 Overview

In this study, we designed three heuristics based on the
concepts of the “Bottoms Up” (BU) task-scheduling heuris-
tic proposed in the literature [33]. The first two heuris-
tics are necessary to explore the search space and are used
for comparison to the third. All variations share the two-
phase greedy list-scheduling approach of the BU heuristic.
Basically, each heuristic assigns one task of the DAG at a
time until the entire DAG is scheduled. Each assignment
simply consists of mapping the task to a node, multicore
processor, core, and P-state for execution. After each iter-
ation, we can evaluate the makespan, energy consumption,
and partial robustness of the partially-scheduled DAG (the
set of scheduled tasks) as described in Sections 3.3 and 4
to make scheduling decisions. The concept of a two-phase
heuristic has been successfully used in other environments,
e.g., [14,34].

The BU heuristic (as described in [10]) requires a lev-
elized DAG. The levelizing procedure assigns each task of
the DAG to a level based on its precedence constraints.
We first assign each task with no successors to level 0 (the
highest-priority level). We then iterate through the tasks,
assigning each to a level one higher than the highest-level
consumer of its output data. In Figure 2, tasks 4 and 5 have
no successors, and are assigned to level 0. Tasks 2 and 3
produce data consumed on level 0, so they are assigned to
level 1. Task 1 produces data consumed on levels 0 and 1,
so it is assigned to level 2.

5.2 Bottoms Up Two-Phase Heuristics

The three heuristics have different objectives, but use a
similar procedure for scheduling. Each heuristic schedules
each task using two phases to greedily minimize (or maxi-
mize) the value of its objective for the partially-scheduled
DAG. In the first phase, each heuristic iterates through
all the tasks in the current level. For each task, a copy

Figure 2: An example of levelizing a DAG consist-
ing of five tasks. Each task is represented by a cir-
cle, and data sent from a task to a successor is rep-
resented by a directed edge connecting two tasks.
Each task 77 through 75 is placed in one of the three
levels Lo through L, (demarcated by the dashed
lines) based on its highest-level successor task.

of the current partial schedule is made for every combina-
tion of node, multicore processor, and P-state with the task
scheduled on that node, multicore processor, core, and P-
state. All copies are then evaluated using the Monte Carlo
approach, and the combination that resulted in the mini-
mum (or maximum) objective value for the partial schedule
is stored for that task. In the second phase, the heuris-
tic chooses the combination with the minimum (or maxi-
mum) objective value from among the stored combinations
and schedules the task with that combination accordingly.
The objective of the Bottoms Up Min-Min Completion
Time (CT) heuristic is to minimize completion time, while
the objective of the Bottoms Up Min-Min Energy (En)
heuristic is minimize energy consumption. The objective of
the Bottoms Up Max-Max Robustness (Rb) heuristic
is to maximize robustness directly.

The Rb heuristic only adds one task to the schedule dur-
ing each iteration, so the robustness calculations described in
Section 4 cannot be applied directly. This is because the first
several tasks assigned will meet both constraints regardless
of the quality of their assignments, and therefore the robust-
ness of all potential assignments for these tasks will be 100%.
We address this problem by using the completion-time and
energy-consumption values from the Monte Carlo evaluation
to compute the percentage of the deadline and percentage of
the energy constraint remaining after each potential assign-
ment. We then sum these two values and pick the potential
assignment with the greatest sum. In theory, this approach
would allow a schedule 0% remaining energy (energy con-
straint exceeded) and 80% remaining deadline (completion
time at 20% of the deadline) to be chosen over a schedule
with 30% remaining of both the energy constraint and the
makespan, but in practice this situation never arises. Be-
cause the heuristics only map one task per iteration, all the
schedules compared during a single iteration of the heuristic
differ by only one task assignment and therefore have simi-
lar values for the percentage of deadline and percentage of
energy budget remaining.

There is also a limitation to the En heuristic. Consider
the DAG in Figure 2 again, and suppose that only task 4
has been scheduled. The multicore processor executing task



4 must have all of its cores active in at least the lowest-
performance P-state (as described in Section 3.3). Because
of this overhead from other cores, executing task 5 on an-
other core of the same multicore processor as task 4 will re-
sult in a lower energy consumption than executing it on a dif-
ferent multicore processor in the same compute node. Sim-
ilarly, executing task 5 on another compute node will incur
the energy overhead for the idle cores in its multicore proces-
sor as well as the energy overhead for other components in
the node (as described in Section 3.3). These overheads bias
the assignment of task 5 towards the same multicore proces-
sor as task 4, which may result in a higher energy consump-
tion in the final schedule than if task 5 was assigned to its
true minimum-energy machine. The Rb heuristic shares this
behavior, but also has the advantage of optimizing for both
completion time and energy consumption and is therefore
less-affected.

6. SIMULATION ENVIRONMENT

All of our simulation trials use the structure of the 88-
task robot-control DAG [35] from the Standard Task Graph
set [11]. All trials also share a common system configuration
of 28 cores divided into four compute nodes: a node with
four dual-core processors, a node with three dual-core pro-
cessors, a node with two tri-core processors, and a node with
two quad-core processors. Additionally, the simulation tri-
als share a single matrix of communication delay-time pmfs
(one entry for each pair of compute nodes) and a single set
of data transfer requirements for the tasks in the DAG. Our
entire simulation consists of a set of 48 simulation trials,
with only the matrix of execution-time pmfs (one entry for
each task on each compute node) varying across trials.

To make our system heterogeneous, task execution-time
pmfs are generated using the CVB method described in [36]
with the parameters Vigsr and Viacn set to 0.25 and pigask
equal to the scalar value provided as the execution time of
each task in the Standard Task Graph robot-control DAG
file [11]. In this way, we keep the average task execution
time across all machines roughly equal to the values from
the original data source, but different compute nodes will
have different execution-time pmfs for the same task.

The robot-control DAG does not include communication-
time information between tasks, so we generate it. First, we
make every task transmit data packages (between one and
eight, selected uniformly at random) to each of its children.
We then take the average number of packages transferred
and pick a value for the deterministic transfer time (see Sec-
tion 3.1) such that the deterministic transfer time needed to
send all data packages in the DAG is roughly half of the to-
tal expected time needed to compute all tasks in the DAG.
We then generate a set of random numbers from a normal
distribution with a mean equal to the deterministic trans-
fer time and a variance of 0.25, and these numbers are used
for the deterministic transfer times for each pair of compute
nodes (the values of tunit (¢, m) from Equation 1).

With the data transfer amounts and deterministic transfer
times, we generate the matrix of communication delay-time
pmfs (the values of tgeiay (i, m) from Equation 1) using the
CVB method [36] with the parameters Vigsk = Vingen = 0.25
and fitqsk equal to the deterministic transfer time. In this
way, the total communication time is roughly equal to the
total computation time. In reality, though, there will be less

communication than computation because tasks scheduled
on the same compute node do not need to communicate.

For our simulation study, the deadline and energy con-
straint for the workload are set using the En and CT heuris-
tics (these would be determined by the computing facility in
practice). We set the deadline equal to the minimum average
completion time of the En heuristic over 48 simulation tri-
als and the energy constraint equal to the minimum average
energy consumption of the CT heuristic over 48 simulation
trials. By doing this, we effectively limit the best-case ro-
bustness of these two heuristics to be at most 50%. These
constraints are loose enough, however, to give our Rb heuris-
tic room to trade energy consumption for completion time.

In our simulations, we assume all multicore processors
have five P-states for each core. The clock-speed profile
for the five P-states of each core is specified by a set of five
multipliers that scale the execution time distributions of a
task executing on that core to reflect a higher or lower per-
formance. The multipliers for each P-state are calculated
by adding a random sample from a uniform distribution to
the previous multiplier (in effect increasing the performance
by a random percentage between 15% and 25%). For all
cores, the minimum P-state multiplier was never less than
42% of the maximum, implying that the minimum operat-
ing frequency was at least 42% of the maximum (there are
current AMD Phenom processors with similar frequency ra-
tios [37]). We approximated the effects of multicore interfer-
ence (as mentioned in Section 3.1) using a fixed-percentage
multiplier of 5%.

The power consumption profile for the five P-states of
each core is extrapolated using real data with the standard
CMOS dynamic power dissipation formula. This implicitly
assumes that dynamic power is the major component of pro-
cessor power consumption, but we are using the formula for
extrapolation based on real data, so this assumption has lit-
tle effect. If A is the number of transistor switches per clock
cycle, Cr, is the capacitive load, V is the supply voltage,
and f is the operating frequency, then the dynamic power
dissipation is

Pd:AxCLxV2><f. (7)

We first calculate the power consumption in the highest P-
state for each core by randomly sampling a uniform dis-
tribution between 125 and 135 Watts (values taken from
datasheets [37]). We then randomly sample a uniform dis-
tribution between 1.000 and 1.150 to obtain a low P-state
voltage, randomly sample a uniform distribution between
1.400 and 1.550 to obtain a high P-state voltage, calculate
the voltage numbers for the remaining P-states via linear
interpolation, factor A x Cp, into a constant, and use our
voltage and frequency values for each P-state to compute
a power consumption value. In practice, this results in a
power consumption for the low P-state of about 25% of that
in the high P-state (again, there are current AMD Phenom
processors with similar power consumption values [37]).

Power consumption for system components (NIC, disk,
and memory) is computed by sampling a uniform distribu-
tion around a datasheet value for each D-state. The Dy and
D1 mean values for disks are 9.5W and 7TW, respectively.
The Dy and D; mean values for memory are 4W and 2W,
respectively. The Dy and D; mean values for the NICs are
1.5W and 6W, respectively.

As mentioned in Section 3.3, the power consumed in C-



state C7 is a fixed percentage of the power consumed with
all cores idle in P;. We study the results when this multi-
plier is 5%, 25%, and 50%. There are current AMD Phenom
processors with a C power consumption around 25% of the
lowest Co value [37], and we try 5% and 50% to examine
the extent to which C; energy consumption affects the total
energy consumption of the system. Similarly, we use a G
multiplier of 10% to isolate the effects of idle compute nodes.
The power consumption profile for the NIC, disk, and mem-
ory in both device states are sampled from uniform random
distributions based on current datasheet values.

We use 1000 iterations in each of our Monte Carlo eval-
uations. This value works well empirically, as the average
completion time of all trials is within 1% of the average at
10,000 evaluations.

7. RESULTS

Box-and-whiskers plots for the results of each of the three
heuristics for each of the three C1 multipliers (described in
Section 6) are shown in Figure 3(a). Each plot shows the
minimum, first quartile, median, third quartile, and maxi-
mum robustness values obtained for the heuristic over the
48 trials.

As described in Section 6, the mean energy consumption
of the lowest-energy-consumption CT trial is used to set
the energy constraint, and the mean completion time of the
shortest completion-time En trial is used to set the deadline.
Because of this, we immediately see that the best-case ro-
bustness of the CT and En heuristics barely exceeds 50% in
the best case (the trial used to set the constraints). The Rb
heuristic very clearly considers both constraints, resulting in
a median robustness of 88% in the most-realistic case (Ci
multiplier is 25%). Even in the worst case (C; multiplier of
50%), the Rb heuristic still obtains a median robustness of
~ 75% (nearly 60% higher than that of the En heuristic).

It is also interesting to note from Figure 3(a) that the En
heuristic performs very poorly when the C7 multiplier is 5%.
As the multiplier increases, the En heuristic schedules tasks
to execute more quickly because leaving compute nodes ac-
tive (or even idle) uses considerably more energy. At the
5% multiplier, though, the En heuristic schedules nearly ev-
ery task to run very slowly, which results in a slightly-lower
(~ 9%) median energy consumption than the other heuris-
tics, but a much longer (=~ 30%) median execution time.
This long execution time makes it nearly impossible for the
En heuristic to meet the completion-time constraint, and so
the robustness of the heuristic is nearly 0%.

To better understand these results, we first examine the
completion time (shown in Figure 3(b)) and energy con-
sumption (shown in Figure 3(c)) of the same 48 trials.

In Figure 3(b), the makespan of the En heuristic decreases
as the C7 multiplier increases. This indicates clearly that,
as the energy consumption for idle components (the Cy en-
ergy consumption) increases, minimizing energy consump-
tion requires lowering the makespan. This happens because
energy consumption is measured until all tasks in the DAG
have completed, and so a schedule with a longer makespan
consumes more energy in idle components. As the C1 multi-
plier increases, that extra energy becomes a significant part
of the total energy consumed by the system. We can also
observe that, while the energy consumption of all heuristics
increases as the C; multiplier increases, the energy consump-
tion of the CT heuristic increases much more dramatically
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Figure 3: Box-and-whiskers plots showing the min-
imum, first quartile, median, third quartile, and
maximum values obtained for each of the three
heuristics at each C; multiplier over the 48 simu-
lation trials. Recall that the C; multiplier repre-
sents the percentage of idle Cy energy consumed by
the multicore processors while in C;. In (a), the
Rb heuristic always obtains a median robustness at
least 60% higher than any other heuristic. In (b),
we see that the completion time of the En heuristic
decreases drastically as the (7 multiplier increases,
indicating that the energy consumption during C; is
significant. In (c), the Rb heuristic always obtains
an energy consumption between that of the CT and
En heuristics, indicating its successful tradeoff be-
havior.



than that of the other two. This indicates that the schedules
produced by the CT heuristic include large amounts of idle
time in the system.

If we examine the schedules produced by the three heuris-
tics for a single representative trial, we can see each heuristic
optimizing directly towards its objective. The CT heuris-
tic will spread tasks among compute nodes freely to mini-
mize completion time, achieving a completion time of about
650s. Likewise, the En heuristic will assign all tasks to the
cores of the most energy-efficient compute node, leaving all
other nodes in G1 (the low-power state for an entire com-
pute node), resulting in a lower energy consumption with a
completion time of about 800s. The Rb heuristic makes an
intelligent tradeoff by using only the same energy-efficient
compute node as the En heuristic for most of the tasks, but
placing a small group of tasks on a fast compute node to
decrease completion time. This results in a completion time
of just over 700s, but with a 25% energy savings over the
CT heuristic.

Finally, we can examine the energy consumption and com-
pletion time of all trials (Figure 4). This plot shows the
standard deviation in energy consumption and completion
time as an ellipse around the mean of each trial over 1000
Monte Carlo evaluations. Each of the 48 trials is connected,
and we clearly see the Rb heuristic trading between the CT
and En heuristics to stay within the constraints.
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Figure 4: The means and standard deviations, in-
dicated by the center and major/minor axes of the
ellipses respectively, of each of the three heuristics
over all 48 trials at a 1 multiplier of 25%.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we designed an energy consumption model
for our system. We also designed a definition of robust-
ness for our environment and validated its use in allocation
decisions via simulation. We presented two adaptations of
existing heuristics, and one novel heuristic that can make
assignments utilizing robustness and accounting for an en-
ergy constraint. Based on our results, we can conclude that
our new heuristic greatly improves performance in our envi-
ronment.

For future work, we first want to consider other DAGs
and system configurations. In particular, the Standard Task
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Graph set [11] contains application DAGs for a sparse ma-
trix solver and the fpppp routine from the SPEC benchmark.
These graphs differ considerably from the robot DAG we use,
and testing our model and heuristics with them will be use-
ful. We can also vary the amount of communication in each
DAG and study the behavior of our heuristics. We would
also like to vary our system configuration to examine how
a larger or smaller number of nodes, multicore processors,
and cores affect the scheduling of the different DAGs.

We also plan to implement some new heuristics and im-
prove our existing ones for further testing. We have plans
to implement a Genetic Algorithm, which will allow us to
compare our greedy heuristics to an iterative heuristic.
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